Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper reports the theoretical findings of the new modified type of tuned liquid column ball damper (TLCBD), called a tuned liquid column ball spring damper (TLCBSD). In this new modified form, the ball inside the horizontal section of the damper is attached to the spring. Furthermore, two types of this modified version are proposed, known as a tuned liquid column ball spring sliding damper (TLCBSSD) and a tuned liquid column ball spring rolling damper (TLCBSRD). In the former, the rotational motion of the ball attached to the spring is restricted, whereas in the latter, the ball attached to the spring can translate as well as rotate. Mathematical models and optimum design parameters are formulated for both types. The performance of these new modified damper versions is assessed numerically and subjected to harmonic, seismic, and impulse loadings. The results show that the performance of the newly proposed dampers is relatively better than traditional TLCBDs in harmonic and seismic excitations. The peak response reduction soon after the impact load becomes zero is comparatively better in TLCBSDs over TLCBDs. Overall, the newly proposed passive vibration control devices performed excellently in structure response reduction over TLCBDs.

Details

Title
Effect of Tuned Spring on Vibration Control Performance of Modified Liquid Column Ball Damper
Author
Shah, Mati Ullah 1   VIAFID ORCID Logo  ; Usman, Muhammad 1   VIAFID ORCID Logo  ; Syed Hassan Farooq 2   VIAFID ORCID Logo  ; Kim, In-Ho 3   VIAFID ORCID Logo 

 School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; [email protected] 
 Military College of Engineering (MCE), National University of Sciences and Technology (NUST), Risalpur 24080, Pakistan; [email protected] 
 Department of Civil Engineering, Kunsan National University, Kunsan 54150, Korea 
First page
318
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618214227
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.