Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the Industrial Internet of Things (IIoT), various tasks are created dynamically because of the small quantity batch production. Hence, it is difficult to execute tasks only with devices that have limited battery lives and computation capabilities. To solve this problem, we adopted the mobile edge computing (MEC) paradigm. However, if there are numerous tasks to be processed on the MEC server (MECS), it may not be suitable to deal with all tasks in the server within a delay constraint owing to the limited computational capability and high network overhead. Therefore, among cooperative computing techniques, we focus on task offloading to nearby devices using device-to-device (D2D) communication. Consequently, we propose a method that determines the optimal offloading strategy in an MEC environment with D2D communication. We aim to minimize the energy consumption of the devices and task execution delay under certain delay constraints. To solve this problem, we adopt a Q-learning algorithm that is part of reinforcement learning (RL). However, if one learning agent determines whether to offload tasks from all devices, the computing complexity of that agent increases tremendously. Thus, we cluster the nearby devices that comprise the job shop, where each cluster’s head determines the optimal offloading strategy for the tasks that occur within its cluster. Simulation results show that the proposed algorithm outperforms the compared methods in terms of device energy consumption, task completion rate, task blocking rate, and throughput.

Details

Title
A Cluster-Based Optimal Computation Offloading Decision Mechanism Using RL in the IIoT Field
Author
Koo, Seolwon  VIAFID ORCID Logo  ; Lim, Yujin  VIAFID ORCID Logo 
First page
384
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618215142
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.