Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The thermoelectric refrigeration system is an application of the Peltier effect, and good refrigeration performance is dependent on effective heat dissipation performance. To enhance the cooling performance of the thermoelectric system, this paper designs a new type of finned heat sink, which does not change the overall size of the thermoelectric system. The performance of the refrigeration system under the new fin is tested by experiments under various conditions. During the experiment, the cooling wind speed, the temperature of the hot and cold side of the TEC, the power consumption of the fan, and other parameters were directly recorded through the measuring instrument. The results show that the use of new finned heat sinks can improve the COP of the thermoelectric refrigeration system. Within the scope of the study, the thermal resistance of the new fins can be reduced by 42.6%, and the system COP value can be increased by 22.8%. In addition, increasing the cooling wind speed can further reduce the cold side temperature. Within the research range, the lowest temperature can reach −8.25 °C, but the power consumed by the fan is 166% of that of the conventional fin heat sink refrigeration device.

Details

Title
Study on Performance of the Thermoelectric Cooling Device with Novel Subchannel Finned Heat Sink
Author
Xia, Gaoju; Zhao, Huadong; Zhang, Jingshuang; Yang, Haonan; Feng, Bo; Zhang, Qi; Song, Xiaohui
First page
145
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618235038
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.