Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The types of urban mountains are diverse, and the surrounding environment is complex. The conditions of runoff generation and convergence in different regions of the same mountain vary. Using the Lijia Mountain in China’s Nanjing City as a case study, this study investigates the effects of such mountain-region-based LID (Low Impact Development) systems. Based on the hydrological analysis of this mountain region, SWMM (Storm Water Management Model) software is used to model and compare the runoff control effects of two LID systems schemes, namely segmental detention and retention and terminal detention and retention. The study’s findings demonstrate that the terminal detention and retention scheme can effectively delay the time of peak flooding and partly reduce peak discharge. In contrast, the segmental detention and retention scheme has a limited delay effect on flood peaks but significantly reduces the peak discharge. This research breaks through the limitations of the previous construction of a single LID scheme for mountainous regions in built-up urban areas. It serves as a theoretical model and technical reference for selecting LID scenarios in response to different mountain conditions.

Details

Title
SWMM-Based Assessment of Urban Mountain Stormwater Management Effects under Different LID Scenarios
Author
Yuan, Yangyang; Gan, Yu; Xu, Yuhan; Xie, Qining; Shen, Yuqing; Yin, Yue
First page
78
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618250581
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.