Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fast urbanization produces a large and growing population in coastal areas. However, the increasing rise in sea levels, one of the most impacts of global warming, makes coastal communities much more vulnerable to flooding than before. While most existing work focuses on understanding the large-scale impacts of sea-level rise, this paper investigates parcel-level property impacts, using a specific coastal city, Tampa, Florida, USA, as an empirical study. This research adopts a spatial-temporal analysis method to identify locations of flooded properties and their costs over a future period. A corrected sea-level rise model based on satellite altimeter data is first used to predict future global mean sea levels. Based on high-resolution LiDAR digital elevation data and property maps, properties to be flooded are identified to evaluate property damage cost. This empirical analysis provides deep understanding of potential flooding risks for individual properties with detailed spatial information, including residential, commercial, industrial, agriculture, and governmental buildings, at a fine spatial scale under three different levels of global warming. The flooded property maps not only help residents to choose location of their properties, but also enable local governments to prevent potential sea-level rising risks for better urban planning. Both spatial and temporal analyses can be easily applied by researchers or governments to other coastal cities for sea-level rise- and climate change-related urban planning and management.

Details

Title
The Impact of Sea-Level Rise on Urban Properties in Tampa Due to Climate Change
Author
Xie, Weiwei 1   VIAFID ORCID Logo  ; Tang, Bo 2   VIAFID ORCID Logo  ; Meng, Qingmin 1   VIAFID ORCID Logo 

 Department of Geosciences, Mississippi State University, Starkville, MS 39762, USA; [email protected] 
 Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA; [email protected] 
First page
13
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618251508
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.