Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper considers the physical layer security (PLS) of a simultaneous wireless information and power transfer (SWIPT) relay communication system composed of a legitimate source–destination pair and some eavesdroppers. Supposing a disturbance of channel status information (CSI) between relay and eavesdroppers in a bounded ellipse, we intend to design a robust beamformer to maximum security rate in the worst case on the constraints of relay energy consumption. To handle this non-convex optimization problem, we introduce a slack variable to transform the original problem into two sub-problems firstly, then an algorithm employing a semidefinite relaxation (SDR) technique and S-procedure is proposed to tackle above two sub-problems. Although our study was conducted in the scene of a direct link among source, destination, and eavesdroppers that is non-existing, we demonstrate that our conclusions can be easily extended to the scene for which a direct link among source, destination and eavesdroppers exist. Numerical simulation results compared with the benchmark scheme are provided to prove the effectiveness and superior performance of our algorithm.

Details

Title
Robust Security Beamforming for SWIPT-Assisted Relay System with Channel Uncertainty
Author
Guo, Ruijie 1   VIAFID ORCID Logo  ; Fu, Chunling 2 ; Jin, Yong 1   VIAFID ORCID Logo  ; Hu, Zhentao 1 ; Zhou, Lin 1   VIAFID ORCID Logo 

 School of Artificial Intelligence, Henan University, Zhengzhou 450046, China; [email protected] (R.G.); [email protected] (Y.J.); [email protected] (Z.H.); [email protected] (L.Z.) 
 School of Physics and Electronics, Henan University, Kaifeng 475004, China 
First page
370
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618268310
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.