Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The ecosystem for an Internet of Things (IoT) generally comprises endpoint clients, network devices, and cloud servers. Thus, data transfers within the network present multiple security concerns. The recent boom in IoT applications has accelerated the need for a network infrastructure that provides timely and safe information exchange services. A shortcoming of many existing networks is the use of static key authentication. To enable the use of automatic key update mechanisms in IoT devices and enhance security in lightweight machine-to-machine (M2M) communications, we propose a key update mechanism, namely, double OTP (D-OTP), which combines both one-time password (OTP) and one-time pad to achieve an IoT ecosystem with theoretically unbreakable security. The proposed D-OTP was implemented into the Constrained Application Protocol (CoAP) through the commonly used libcoap library. The experimental results revealed that an additional 8.93% latency overhead was required to obtain an unbreakable guarantee of data transfers in 100 CoAP communication sessions.

Details

Title
Automatic Key Update Mechanism for Lightweight M2M Communication and Enhancement of IoT Security: A Case Study of CoAP Using Libcoap Library
Author
Wen-Chung, Tsai 1   VIAFID ORCID Logo  ; Tsai, Tzu-Hsuan 1 ; Te-Jen, Wang 2 ; Mao-Lun Chiang 3 

 Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung City 413310, Taiwan; [email protected] 
 Smart System Institute, Institute for Information Industry, Taipei City 10622, Taiwan; [email protected] 
 Bachelor Degree Program of Artificial Intelligence, National Taichung University of Science and Technology, Taichung City 40401, Taiwan 
First page
340
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618274983
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.