It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Parameter estimation is a pivotal task, where quantum technologies can enhance precision greatly. We investigate the time-dependent parameter estimation based on deep reinforcement learning, where the noise-free and noisy bounds of parameter estimation are derived from a geometrical perspective. We propose a physical-inspired linear time-correlated control ansatz and a general well-defined reward function integrated with the derived bounds to accelerate the network training for fast generating quantum control signals. In the light of the proposed scheme, we validate the performance of time-dependent and time-independent parameter estimation under noise-free and noisy dynamics. In particular, we evaluate the transferability of the scheme when the parameter has a shift from the true parameter. The simulation showcases the robustness and sample efficiency of the scheme and achieves the state-of-the-art performance. Our work highlights the universality and global optimality of deep reinforcement learning over conventional methods in practical parameter estimation of quantum sensing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, and Center of Quantum Sensing and Information Processing, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293)
2 University of North Carolina-Charlotte, Department of Computer Science, Charlotte, USA (GRID:grid.266859.6) (ISNI:0000 0000 8598 2218)