Abstract

Diagnosis based on histopathology for skin cancer detection is today’s gold standard and relies on the presence or absence of biomarkers and cellular atypia. However it suffers drawbacks: it requires a strong expertise and is time-consuming. Moreover the notion of atypia or dysplasia of the visible cells used for diagnosis is very subjective, with poor inter-rater agreement reported in the literature. Lastly, histology requires a biopsy which is an invasive procedure and only captures a small sample of the lesion, which is insufficient in the context of large fields of cancerization. Here we demonstrate that the notion of cellular atypia can be objectively defined and quantified with a non-invasive in-vivo approach in three dimensions (3D). A Deep Learning (DL) algorithm is trained to segment keratinocyte (KC) nuclei from Line-field Confocal Optical Coherence Tomography (LC-OCT) 3D images. Based on these segmentations, a series of quantitative, reproducible and biologically relevant metrics is derived to describe KC nuclei individually. We show that, using those metrics, simple and more complex definitions of atypia can be derived to discriminate between healthy and pathological skins, achieving Area Under the ROC Curve (AUC) scores superior than 0.965, largely outperforming medical experts on the same task with an AUC of 0.766. All together, our approach and findings open the door to a precise quantitative monitoring of skin lesions and treatments, offering a promising non-invasive tool for clinical studies to demonstrate the effects of a treatment and for clinicians to assess the severity of a lesion and follow the evolution of pre-cancerous lesions over time.

Details

Title
Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning
Author
Fischman Sébastien 1 ; Pérez-Anker Javiera 2 ; Tognetti, Linda 3 ; Angelo, Di Naro 3 ; Suppa Mariano 4 ; Cinotti Elisa 5 ; Viel Théo 6 ; Monnier Jilliana 7 ; Rubegni Pietro 3 ; del Marmol Véronique 8 ; Malvehy Josep 2 ; Puig, Susana 2 ; Dubois Arnaud 9 ; Perrot Jean-Luc 10 

 DAMAE Medical, Paris, France 
 University of Barcelona, Melanoma Unit, Hospital Clinic Barcelona, Barcelona, Spain (GRID:grid.5841.8) (ISNI:0000 0004 1937 0247); CIBER de enfermedades raras, Instituto de Salud Carlos III, Barcelona, Spain (GRID:grid.413448.e) (ISNI:0000 0000 9314 1427) 
 University of Siena, Dermatology Unit - Department of Medical, Surgical and Neurological Sciences, Siena, Italy (GRID:grid.9024.f) (ISNI:0000 0004 1757 4641) 
 Université Libre de Bruxelles, Hôpital Erasme, Department of Dermatology, Brussels, Belgium (GRID:grid.4989.c) (ISNI:0000 0001 2348 0746); Groupe d’Imagerie Cutanée Non Invasive (GICNI) of the Société Française de Dermatologie (SFD), Paris, France (GRID:grid.4989.c); Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium (GRID:grid.418119.4) (ISNI:0000 0001 0684 291X) 
 University of Siena, Dermatology Unit - Department of Medical, Surgical and Neurological Sciences, Siena, Italy (GRID:grid.9024.f) (ISNI:0000 0004 1757 4641); Groupe d’Imagerie Cutanée Non Invasive (GICNI) of the Société Française de Dermatologie (SFD), Paris, France (GRID:grid.9024.f) 
 DAMAE Medical, Paris, France (GRID:grid.9024.f) 
 Groupe d’Imagerie Cutanée Non Invasive (GICNI) of the Société Française de Dermatologie (SFD), Paris, France (GRID:grid.9024.f); la Timone hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Department of Dermatology and skin cancer, Marseille, France (GRID:grid.5399.6) (ISNI:0000 0001 2176 4817) 
 Université Libre de Bruxelles, Hôpital Erasme, Department of Dermatology, Brussels, Belgium (GRID:grid.4989.c) (ISNI:0000 0001 2348 0746) 
 Laboratoire Charles Fabry, Université Paris-Saclay, Institut d’Optique Graduate School, Palaiseau, France (GRID:grid.462674.5) (ISNI:0000 0001 2265 1734) 
10  University Hospital of Saint-Etienne, Department of Dermatology, Saint-Etienne, France (GRID:grid.412954.f) (ISNI:0000 0004 1765 1491) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618382940
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.