Abstract

Operation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo’s criteria for a scalable quantum information processor.

Hole-spin qubits in germanium are promising candidates for rapid, all-electrical qubit control. Here the authors report Rabi oscillations with the record frequency of 540 MHz in a hole-based double quantum dot in a germanium hut wire, which is attributed to strong spin-orbit interaction of heavy holes.

Details

Title
Ultrafast coherent control of a hole spin qubit in a germanium quantum dot
Author
Wang, Ke 1   VIAFID ORCID Logo  ; Xu, Gang 1 ; Gao Fei 2 ; Liu, He 1 ; Rong-Long, Ma 1 ; Zhang, Xin 1 ; Wang Zhanning 3 ; Cao, Gang 1 ; Wang, Ting 2   VIAFID ORCID Logo  ; Zhang, Jian-Jun 2   VIAFID ORCID Logo  ; Culcer Dimitrie 3   VIAFID ORCID Logo  ; Hu, Xuedong 4 ; Hong-Wen, Jiang 5 ; Hai-Ou, Li 1   VIAFID ORCID Logo  ; Guo Guang-Can 1 ; Guo-Ping, Guo 6   VIAFID ORCID Logo 

 University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); University of Science and Technology of China, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639) 
 Chinese Academy of Sciences, Institute of Physics and CAS Center for Excellence in Topological Quantum Computation, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 University of New South Wales, School of Physics, Sydney, Australia (GRID:grid.1005.4) (ISNI:0000 0004 4902 0432) 
 University at Buffalo, SUNY, Department of Physics, Buffalo, USA (GRID:grid.273335.3) (ISNI:0000 0004 1936 9887) 
 University of California, Department of Physics and Astronomy, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); University of Science and Technology of China, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); Origin Quantum Computing Company Limited, Hefei, China (GRID:grid.59053.3a) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618748274
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.