Abstract

The redox reactions occurring in the Li-S battery positive electrode conceal various and critical electrocatalytic processes, which strongly influence the performances of this electrochemical energy storage system. Here, we report the development of a single-dispersed molecular cluster catalyst composite comprising of a polyoxometalate framework ([Co4(PW9O34)2]10−) and multilayer reduced graphene oxide. Due to the interfacial charge transfer and exposure of unsaturated cobalt sites, the composite demonstrates efficient polysulfides adsorption and reduced activation energy for polysulfides conversion, thus serving as a bifunctional electrocatalyst. When tested in full Li-S coin cell configuration, the composite allows for a long-term Li-S battery cycling with a capacity fading of 0.015% per cycle after 1000 cycles at 2 C (i.e., 3.36 A g−1). An areal capacity of 4.55 mAh cm−2 is also achieved with a sulfur loading of 5.6 mg cm2 and E/S ratio of 4.5 μL mg−1. Moreover, Li-S single-electrode pouch cells tested with the bifunctional electrocatalyst demonstrate a specific capacity of about 800 mAh g−1 at a sulfur loading of 3.6 mg cm−2 for 100 cycles at 0.2 C (i.e., 336 mA g−1) with E/S ratio of 5 μL mg−1.

Efficient electrochemical energy storage in Li-S batteries is hindered by sluggish sulfur redox reactions. Here, the authors propose a polyoxometalate/multilayer graphene composite as a bifunctional electrocatalyst for battery performance improvement.

Details

Title
Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries
Author
Lei Jie 1 ; Xiao-Xiang, Fan 1 ; Liu, Ting 1 ; Pan, Xu 1 ; Hou Qing 1 ; Li, Ke 1 ; Ru-Ming, Yuan 1 ; Ming-Sen, Zheng 1   VIAFID ORCID Logo  ; Quan-Feng, Dong 1   VIAFID ORCID Logo  ; Jia-Jia, Chen 1   VIAFID ORCID Logo 

 Xiamen University, State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618748941
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.