It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The geothermal gradient in the eastern area of Liaoning Province is very low, but hot springs resources are variable. The reason is not clear till now but leads to the fact that a few strong influence factors can cause imbalances in the results of many prediction algorithms. It can be found as a black-box algorithm, deep learning will obtain a more unbalanced result with the fault influence factors. To tackle this issue, the role of preprocessing during the process of profound learning was enhanced and four comparative experiments were carried out. The results show that compared with the unprocessed experiment, the accuracy rate of the experiment with fully processed data increased by 11.9 p.p., and the area under the curve increased by 0.086 (0.796–0.882). This inspires us that even though the deep learning method can achieve high accuracy in the prediction of geological resources, we still need to pay attention to the analysis and pretreatment of data with expertise according to local conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Public Policy & Management, China University of Mining and Technology, Xuzhou, Jiangsu, China
2 College of Earth Sciences, Jilin University, Changchun, Jilin, China