Abstract

A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr mutations poses a major global threat to the continued use of insecticides as a means for vector control. In this study, we generate common kdr mutations in isogenic laboratory Drosophila strains using CRISPR/Cas9 editing. We identify differential sensitivities to permethrin and DDT versus deltamethrin among these mutants as well as contrasting physiological consequences of two different kdr mutations. Importantly, we apply a CRISPR-based allelic-drive to replace a resistant kdr mutation with a susceptible wild-type counterpart in population cages. This successful proof-of-principle opens-up numerous possibilities including targeted reversion of insecticide-resistant populations to a native susceptible state or replacement of malaria transmitting mosquitoes with those bearing naturally occurring parasite resistant alleles.

Insecticide resistance (IR) poses a major global health challenge. Here, the authors generate common IR mutations in laboratory Drosophila strains and use a CRISPR-based allelic-drive to replace an IR allele with a susceptible wild-type counterpart, providing a potent new tool for vector control.

Details

Title
Reversing insecticide resistance with allelic-drive in Drosophila melanogaster
Author
Kaduskar Bhagyashree 1 ; Kushwah Raja Babu Singh 1 ; Auradkar Ankush 2 ; Guichard Annabel 3 ; Li, Menglin 4   VIAFID ORCID Logo  ; Bennett, Jared B 5   VIAFID ORCID Logo  ; Julio Alison Henrique Ferreira 6 ; Marshall, John M 7   VIAFID ORCID Logo  ; Montell, Craig 4 ; Bier, Ethan 3   VIAFID ORCID Logo 

 Center at inStem, Tata Institute for Genetics and Society, Bangalore, India (GRID:grid.508203.c) (ISNI:0000 0004 9410 4854); University of California, San Diego, Section of Cell and Developmental Biology, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242); University of California, San Diego, Tata Institute for Genetics and Society, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242) 
 University of California, San Diego, Section of Cell and Developmental Biology, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242) 
 University of California, San Diego, Section of Cell and Developmental Biology, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242); University of California, San Diego, Tata Institute for Genetics and Society, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242) 
 University of California, Neuroscience Research Institute, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676); University of California, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676) 
 University of California, Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Rio de Janeiro, Brazil (GRID:grid.8536.8) (ISNI:0000 0001 2294 473X) 
 University of California, Division of Biostatistics and Epidemiology - School of Public Health, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Innovative Genomics Institute, Berkeley, USA (GRID:grid.510960.b) (ISNI:0000 0004 7798 3869) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2619056345
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.