Abstract

The rapid adoption of artificial intelligence methods in healthcare is coupled with the critical need for techniques to rigorously introspect models and thereby ensure that they behave reliably. This has led to the design of explainable AI techniques that uncover the relationships between discernible data signatures and model predictions. In this context, counterfactual explanations that synthesize small, interpretable changes to a given query while producing desired changes in model predictions have become popular. This under-constrained, inverse problem is vulnerable to introducing irrelevant feature manipulations, particularly when the model’s predictions are not well-calibrated. Hence, in this paper, we propose the TraCE (training calibration-based explainers) technique, which utilizes a novel uncertainty-based interval calibration strategy for reliably synthesizing counterfactuals. Given the wide-spread adoption of machine-learned solutions in radiology, our study focuses on deep models used for identifying anomalies in chest X-ray images. Using rigorous empirical studies, we demonstrate the superiority of TraCE explanations over several state-of-the-art baseline approaches, in terms of several widely adopted evaluation metrics. Our findings show that TraCE can be used to obtain a holistic understanding of deep models by enabling progressive exploration of decision boundaries, to detect shortcuts, and to infer relationships between patient attributes and disease severity.

Details

Title
Training calibration-based counterfactual explainers for deep learning models in medical image analysis
Author
Thiagarajan, Jayaraman J. 1 ; Thopalli, Kowshik 2 ; Rajan, Deepta 3 ; Turaga, Pavan 2 

 Lawrence Livermore National Labs, Livermore, USA 
 Arizona State University, Geometric Media Lab, Tempe, USA (GRID:grid.215654.1) (ISNI:0000 0001 2151 2636) 
 Milpitas, USA (GRID:grid.215654.1) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2619059272
Copyright
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.