It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We unravel the out-of-equilibrium quantum dynamics of a few interacting bosonic clouds in a two-dimensional asymmetric double-well potential at the resonant tunneling scenario. At the single-particle level of resonant tunneling, particles tunnel under the barrier from, typically, the ground-state in the left well to an excited state in the right well, i.e., states of different shapes and properties are coupled when their one-particle energies coincide. In two spatial dimensions, two types of resonant tunneling processes are possible, to which we refer to as longitudinal and transversal resonant tunneling. Longitudinal resonant tunneling implies that the state in the right well is longitudinally-excited with respect to the state in the left well, whereas transversal resonant tunneling implies that the former is transversely-excited with respect to the latter. We show that interaction between bosons makes resonant tunneling phenomena in two spatial dimensions profoundly rich, and analyze these phenomena in terms of the loss of coherence of the junction and development of fragmentation, and coupling between transverse and longitudinal degrees-of-freedom and excitations. To this end, a detailed analysis of the tunneling dynamics is performed by exploring the time evolution of a few physical quantities, namely, the survival probability, occupation numbers of the reduced one-particle density matrix, and the many-particle position, momentum, and angular-momentum variances. To accurately calculate these physical quantities from the time-dependent many-boson wavefunction, we apply a well-established many-body method, the multiconfigurational time-dependent Hartree for bosons (MCTDHB), which incorporates quantum correlations exhaustively. By comparing the survival probabilities and variances at the mean-field and many-body levels of theory and investigating the development of fragmentation, we identify the detailed mechanisms of many-body longitudinal and transversal resonant tunneling in two dimensional asymmetric double-wells. In particular, we find that the position and momentum variances along the transversal direction are almost negligible at the longitudinal resonant tunneling, whereas they are substantial at the transversal resonant tunneling which is caused by the combination of the density and breathing mode oscillations. We show that the width of the interparticle interaction potential does not affect the qualitative physics of resonant tunneling dynamics, both at the mean-field and many-body levels. In general, we characterize the impact of the transversal and longitudinal degrees-of-freedom in the many-boson tunneling dynamics at the resonant tunneling scenarios.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Haifa, Department of Mathematics, Haifa, Israel (GRID:grid.18098.38) (ISNI:0000 0004 1937 0562); University of Haifa, Haifa Research Center for Theoretical Physics and Astrophysics, Haifa, Israel (GRID:grid.18098.38) (ISNI:0000 0004 1937 0562)