Abstract

Ultra-intense MeV photon and neutron beams are indispensable tools in many research fields such as nuclear, atomic and material science as well as in medical and biophysical applications. For applications in laboratory nuclear astrophysics, neutron fluxes in excess of 1021 n/(cm2 s) are required. Such ultra-high fluxes are unattainable with existing conventional reactor- and accelerator-based facilities. Currently discussed concepts for generating high-flux neutron beams are based on ultra-high power multi-petawatt lasers operating around 1023 W/cm2 intensities. Here, we present an efficient concept for generating γ and neutron beams based on enhanced production of direct laser-accelerated electrons in relativistic laser interactions with a long-scale near critical density plasma at 1019 W/cm2 intensity. Experimental insights in the laser-driven generation of ultra-intense, well-directed multi-MeV beams of photons more than 1012 ph/sr and an ultra-high intense neutron source with greater than 6 × 1010 neutrons per shot are presented. More than 1.4% laser-to-gamma conversion efficiency above 10 MeV and 0.05% laser-to-neutron conversion efficiency were recorded, already at moderate relativistic laser intensities and ps pulse duration. This approach promises a strong boost of the diagnostic potential of existing kJ PW laser systems used for Inertial Confinement Fusion (ICF) research.

Laser-plasma interaction can provide alternative platform over conventional method for particle and photon beam generation. Here the authors demonstrate generation of gamma ray and neutron beams from intense laser interaction with near critical density plasma.

Details

Title
Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science
Author
Günther, M M 1   VIAFID ORCID Logo  ; Rosmej, O N 2 ; Tavana, P 3 ; Gyrdymov, M 3 ; Skobliakov, A 4 ; Kantsyrev, A 4 ; Zähter, S 5   VIAFID ORCID Logo  ; Borisenko, N G 6 ; Pukhov, A 7   VIAFID ORCID Logo  ; Andreev, N E 8 

 GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany (GRID:grid.159791.2) (ISNI:0000 0000 9127 4365) 
 GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany (GRID:grid.159791.2) (ISNI:0000 0000 9127 4365); Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany (GRID:grid.7839.5) (ISNI:0000 0004 1936 9721); Helmholtz Forschungsakademie Hessen für FAIR (HFHF), Darmstadt, Germany (GRID:grid.498309.f) (ISNI:0000 0004 0521 3611) 
 Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany (GRID:grid.7839.5) (ISNI:0000 0004 1936 9721) 
 Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC<>, Moscow, Russia (GRID:grid.21626.31) (ISNI:0000 0001 0125 8159) 
 GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany (GRID:grid.159791.2) (ISNI:0000 0000 9127 4365); Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany (GRID:grid.7839.5) (ISNI:0000 0004 1936 9721) 
 P. N. Lebedev Physical Institute, RAS, Moscow, Russia (GRID:grid.425806.d) (ISNI:0000 0001 0656 6476) 
 Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (GRID:grid.411327.2) (ISNI:0000 0001 2176 9917) 
 Joint Institute for High Temperatures, RAS, Moscow, Russia (GRID:grid.435259.c) (ISNI:0000 0000 9428 1536); Moscow Institute of Physics and Technology (State University), Dolgoprudny Moscow region, Russia (GRID:grid.18763.3b) (ISNI:0000000092721542) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2619578678
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.