Abstract

Diagnosis of myelodysplastic syndrome (MDS) mainly relies on a manual assessment of the peripheral blood and bone marrow cell morphology. The WHO guidelines suggest a visual screening of 200 to 500 cells which inevitably turns the assessor blind to rare cell populations and leads to low reproducibility. Moreover, the human eye is not suited to detect shifts of cellular properties of entire populations. Hence, quantitative image analysis could improve the accuracy and reproducibility of MDS diagnosis. We used real-time deformability cytometry (RT-DC) to measure bone marrow biopsy samples of MDS patients and age-matched healthy individuals. RT-DC is a high-throughput (1000 cells/s) imaging flow cytometer capable of recording morphological and mechanical properties of single cells. Properties of single cells were quantified using automated image analysis, and machine learning was employed to discover morpho-mechanical patterns in thousands of individual cells that allow to distinguish healthy vs. MDS samples. We found that distribution properties of cell sizes differ between healthy and MDS, with MDS showing a narrower distribution of cell sizes. Furthermore, we found a strong correlation between the mechanical properties of cells and the number of disease-determining mutations, inaccessible with current diagnostic approaches. Hence, machine-learning assisted RT-DC could be a promising tool to automate sample analysis to assist experts during diagnosis or provide a scalable solution for MDS diagnosis to regions lacking sufficient medical experts.

Details

Title
Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes
Author
Herbig Maik 1 ; Jacobi, Angela 2 ; Wobus Manja 3 ; Weidner Heike 4 ; Mies, Anna 3 ; Kräter Martin 5 ; Otto, Oliver 6 ; Thiede, Christian 3 ; Weickert Marie‑Theresa 7 ; Götze, Katharina S 7 ; Rauner Martina 4 ; Hofbauer, Lorenz C 8 ; Bornhäuser, Martin 9 ; Guck Jochen 5 ; Ader Marius 10 ; Platzbecker Uwe 11 ; Balaian Ekaterina 9 

 Technische Universität Dresden, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
 Technische Universität Dresden, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany (GRID:grid.419562.d) (ISNI:0000 0004 0374 4283); University Hospital Carl Gustav Carus Dresden, Medical Department I, Dresden, Germany (GRID:grid.412282.f) (ISNI:0000 0001 1091 2917) 
 University Hospital Carl Gustav Carus Dresden, Medical Department I, Dresden, Germany (GRID:grid.412282.f) (ISNI:0000 0001 1091 2917) 
 University Hospital Carl Gustav Carus Dresden, Medical Department III, Dresden, Germany (GRID:grid.412282.f) (ISNI:0000 0001 1091 2917); Center for Healthy Aging, Dresden, Germany (GRID:grid.412282.f) 
 Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany (GRID:grid.419562.d) (ISNI:0000 0004 0374 4283) 
 Universität Greifswald, Zentrum für Innovationskompetenz: Humorale Immunreaktionen in Kardiovaskulären Erkrankungen, Greifswald, Germany (GRID:grid.5603.0) 
 Technical University of Munich, Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Munich, Germany (GRID:grid.6936.a) (ISNI:0000000123222966) 
 University Hospital Carl Gustav Carus Dresden, Medical Department III, Dresden, Germany (GRID:grid.412282.f) (ISNI:0000 0001 1091 2917); German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584); Center for Healthy Aging, Dresden, Germany (GRID:grid.7497.d) 
 University Hospital Carl Gustav Carus Dresden, Medical Department I, Dresden, Germany (GRID:grid.412282.f) (ISNI:0000 0001 1091 2917); German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584) 
10  Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
11  German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584); Leipzig University Hospital, Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig, Germany (GRID:grid.411339.d) (ISNI:0000 0000 8517 9062) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2620905660
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.