Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Automatic high-level feature extraction has become a possibility with the advancement of deep learning, and it has been used to optimize efficiency. Recently, classification methods for Convolutional Neural Network (CNN)-based electroencephalography (EEG) motor imagery have been proposed, and have achieved reasonably high classification accuracy. These approaches, however, use the CNN single convolution scale, whereas the best convolution scale varies from subject to subject. This limits the precision of classification. This paper proposes multibranch CNN models to address this issue by effectively extracting the spatial and temporal features from raw EEG data, where the branches correspond to different filter kernel sizes. The proposed method’s promising performance is demonstrated by experimental results on two public datasets, the BCI Competition IV 2a dataset and the High Gamma Dataset (HGD). The results of the technique show a 9.61% improvement in the classification accuracy of multibranch EEGNet (MBEEGNet) from the fixed one-branch EEGNet model, and 2.95% from the variable EEGNet model. In addition, the multibranch ShallowConvNet (MBShallowConvNet) improved the accuracy of a single-scale network by 6.84%. The proposed models outperformed other state-of-the-art EEG motor imagery classification methods.

Details

Title
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
Author
Ghadir Ali Altuwaijri 1 ; Muhammad, Ghulam 2   VIAFID ORCID Logo 

 Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia; [email protected]; Computer Sciences and Information Technology College, Majmaah University, Al Majma’ah 11952, Saudi Arabia 
 Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia; [email protected]; Centre of Smart Robotics Research (CS2R), King Saud University, Riyadh 11543, Saudi Arabia 
First page
22
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621271117
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.