Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A novel fast target recognition algorithm is proposed under the dynamic scene moving target recognition. Aiming at the poor matching effect of the traditional Oriented Fast and Rotated Brief (ORB) algorithm on underexposed or overexposed images caused by illumination, the idea of combining adaptive histogram equalization with the ORB algorithm is proposed to get better feature point quality and matching efficiency. First, the template image and each frame of the video stream are processed by grayscale. Second, the template image and the image to be input in the video stream are processed by adaptive histogram equalization. Third, the feature point descriptors of the ORB feature are quantized by the Hamming distance. Finally, the K-nearest-neighbor (KNN) matching algorithm is used to match and screen feature points. According to the matching good feature point logarithm, a reasonable threshold is established and the target is classified. The comparison and verification are carried out by experiments. Experimental results show that the algorithm not only maintains the superiority of ORB itself but also significantly improves the performance of ORB under the conditions of underexposure or overexposure. The matching effect of the image is robust to illumination, and the target to be detected can be accurately identified in real time. The target can be accurately classified in the small sample scene, which can meet the actual production requirements.

Details

Title
Fast Target Recognition Based on Improved ORB Feature
Author
Xie, Yinggang 1 ; Wang, Quan 2 ; Chang, Yuanxiong 2 ; Zhang, Xueyuan 3 

 Institute of Information and Communication, Beijing Information Science & Technology University, Beijing 100101, China; [email protected] (Q.W.); [email protected] (Y.C.); Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100101, China 
 Institute of Information and Communication, Beijing Information Science & Technology University, Beijing 100101, China; [email protected] (Q.W.); [email protected] (Y.C.) 
 Beijing Tellhow Intelligent Engineering Co., Ltd., Beijing 100176, China; [email protected] 
First page
786
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621272829
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.