Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Frequent itemset mining (FIM) is a common approach for discovering hidden frequent patterns from transactional databases used in prediction, association rules, classification, etc. Apriori is an FIM elementary algorithm with iterative nature used to find the frequent itemsets. Apriori is used to scan the dataset multiple times to generate big frequent itemsets with different cardinalities. Apriori performance descends when data gets bigger due to the multiple dataset scan to extract the frequent itemsets. Eclat is a scalable version of the Apriori algorithm that utilizes a vertical layout. The vertical layout has many advantages; it helps to solve the problem of multiple datasets scanning and has information that helps to find each itemset support. In a vertical layout, itemset support can be achieved by intersecting transaction ids (tidset/tids) and pruning irrelevant itemsets. However, when tids become too big for memory, it affects algorithms efficiency. In this paper, we introduce SHFIM (spark-based hybrid frequent itemset mining), which is a three-phase algorithm that utilizes both horizontal and vertical layout diffset instead of tidset to keep track of the differences between transaction ids rather than the intersections. Moreover, some improvements are developed to decrease the number of candidate itemsets. SHFIM is implemented and tested over the Spark framework, which utilizes the RDD (resilient distributed datasets) concept and in-memory processing that tackles MapReduce framework problem. We compared the SHFIM performance with Spark-based Eclat and dEclat algorithms for the four benchmark datasets. Experimental results proved that SHFIM outperforms Eclat and dEclat Spark-based algorithms in both dense and sparse datasets in terms of execution time.

Details

Title
An Efficient Spark-Based Hybrid Frequent Itemset Mining Algorithm for Big Data
Author
Mohamed Reda Al-Bana 1   VIAFID ORCID Logo  ; Marwa Salah Farhan 2   VIAFID ORCID Logo  ; Othman, Nermin Abdelhakim 2   VIAFID ORCID Logo 

 Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo 11795, Egypt; [email protected] or 
 Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo 11795, Egypt; [email protected] or ; Faculty of Informatics and Computer Science, British University in Egypt, Cairo 11837, Egypt 
First page
11
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23065729
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621277221
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.