Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Some new perspectives are offered on the spectral and spatial structure of turbulent flows, in the context of conservation principles and entropy. In recent works, we have shown that the turbulence energy spectra are derivable from the maximum entropy principle, with good agreement with experimental data across the entire wavenumber range. Dissipation can also be attributed to the Reynolds number effect in wall-bounded turbulent flows. Within the global energy and dissipation constraints, the gradients (d/dy+ or d2/dy+2) of the Reynolds stress components neatly fold onto respective curves, so that function prescriptions (dissipation structure functions) can serve as a template to expand to other Reynolds numbers. The Reynolds stresses are fairly well prescribed by the current scaling and dynamical formalism so that the origins of the turbulence structure can be understood and quantified from the entropy perspective.

Details

Title
Entropy and Turbulence Structure
Author
T-W, Lee  VIAFID ORCID Logo  ; Park, J E
First page
11
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621285206
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.