Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Investigation of vegetation cover is crucial to the study of terrestrial ecological environments as it has a close relationship with hydroclimatological variables and plays a dominant role in preserving the characteristics of a region. In Iran, the current study selected the watersheds of two rivers, Nazloo-Chay and Aji-Chay, to systematically investigate the implications and causes of vegetation cover variations under changing environments. These two rivers are among the essential inflows to Lake Urmia, the second largest saline lake on Earth, and are located on the west and east sides of the lake, respectively. There has been a debate between the people living in the rivers’ watersheds about who is responsible for the decline in the level of Lake Urmia—does responsibility fall with those on the east side or with those on the west side? In this study, the normalized difference vegetation index (NDVI) was used as a remotely sensed index to study spatial–temporal pattern changes in vegetation. Moreover, the temperature, precipitation, and streamflow time series were gathered using ground measurements to explore the causes and implications of changing vegetation cover. Discrete wavelet transform was applied to separate the different components of the time series. The Mann–Kendall (MK) test was applied to the time series on monthly, seasonal, and annual time scales. The connections and relationship between the NDVI time series and temperature, precipitation, and streamflow time series and any underlying causes were investigated using wavelet transform coherence (WTC). Land use maps were generated for different years using a support vector machine (SVM) in the final stage. The results indicated that the most dominant monthly, seasonal, and annual hydrological periodicities across the watersheds are 8 months, 6 months, and 2 years, respectively. The increasing vegetation cover during stable hydro-environmental periods revealed unusual conditions in the Aji-Chay watershed and reflected agricultural expansion. The WTC graphs indicated sudden changes in mutual periodicities and time-lags with different patterns between variables, which indicates the increasing anthropogenic activities in both watersheds. However, this was more dominant in the Aji-Chay watershed. The land use maps and investigation of the averaged NDVI maps also denoted that the areas of cultivated land have increased by 30% in the Aji-Chay watershed, and crop types have been changed to the crops with a higher demand for water in both watersheds.

Details

Title
Linking Spatial–Temporal Changes of Vegetation Cover with Hydroclimatological Variables in Terrestrial Environments with a Focus on the Lake Urmia Basin
Author
Foroumandi, Ehsan 1   VIAFID ORCID Logo  ; Nourani, Vahid 2 ; Dąbrowska, Dominika 3   VIAFID ORCID Logo  ; Sameh Ahmed Kantoush 4   VIAFID ORCID Logo 

 Center of Excellence in Hydroinformatics, Faculty of Civil Engineering, University of Tabriz, Tabriz 51666, Iran; [email protected] 
 Center of Excellence in Hydroinformatics, Faculty of Civil Engineering, University of Tabriz, Tabriz 51666, Iran; [email protected]; Faculty of Civil and Environmental Engineering, Near East University, Near East Boulevard, 99138 Nicosia, via Mersin 10, Turkey 
 Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; [email protected] 
 Water Resources Research Centre, Disaster Prevention Research Institute, Kyoto University, Kyoto 606-8501, Japan; [email protected] 
First page
115
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621326909
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.