Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although microorganisms play a key role in the carbon cycle of the Poyang Lake wetland, the relationship between soil microbial community structure and organic carbon characteristics is unknown. Herein, high-throughput sequencing technology was used to explore the effects of water level (low and high levels above the water table) and vegetation types (Persicaria hydropiper and Triarrhena lutarioriparia) on microbial community characteristics in the Poyang Lake wetland, and the relationships between soil microbial and organic carbon characteristics were revealed. The results showed that water level had a significant effect on organic carbon characteristics, and that soil total nitrogen, organic carbon, recombinant organic carbon, particle organic carbon, and microbial biomass carbon were higher at low levels above the water table. A positive correlation was noted between soil water content and organic carbon characteristics. Water level and vegetation type significantly affected soil bacterial and fungal diversity, with water level exerting a higher effect than vegetation type. The impacts of water level and vegetation type were higher on fungi than on bacteria. The bacterial diversity and evenness were significantly higher at high levels above the water table, whereas an opposite trend was noted among fungi. The bacterial and fungal richness in T. lutarioriparia community soil was higher than that in P. hydropiper community soil. Although both water level and vegetation type had significant effects on bacterial and fungal community structures, the water level had a higher impact than vegetation type. The bacterial and fungal community changes were the opposite at different water levels but remained the same in different vegetation soils. The organic carbon characteristics of wetland soil were negatively correlated with bacterial diversity but positively correlated with fungal diversity. Soil water content, soluble organic carbon, C/N, and microbial biomass carbon were the key soil factors affecting the wetland microbial community. Acidobacteria, Alphaproteobacteria, Verrucomicrobia, Gammaproteobacteria, and Eurotiomycetes were the key microbiota affecting the soil carbon cycle in the Poyang Lake wetland. Thus, water and carbon sources were the limiting factors for bacteria and fungi in wetlands with low soil water content (30%). Hence, the results provided a theoretical basis for understanding the microbial-driven mechanism of the wetland carbon cycle.

Details

Title
Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type
Author
Ren, Qiong 1 ; Yuan, Jihong 2 ; Wang, Jinping 3 ; Liu, Xin 4 ; Ma, Shilin 4 ; Zhou, Liyin 2 ; Miao, Lujun 2 ; Zhang, Jinchi 4 

 Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China; [email protected] (Q.R.); [email protected] (X.L.); [email protected] (S.M.); Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; [email protected] (J.Y.); [email protected] (L.Z.); [email protected] (L.M.) 
 Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; [email protected] (J.Y.); [email protected] (L.Z.); [email protected] (L.M.) 
 Jiangxi Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China; [email protected] 
 Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China; [email protected] (Q.R.); [email protected] (X.L.); [email protected] (S.M.) 
First page
131
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621331760
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.