Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This work explores the possibility of using friction stir processing to harden the Ti-6Al-4V titanium alloy material produced by wire-feed electron beam additive manufacturing. For this purpose, thin-walled workpieces of titanium alloy with a height of 30 cm were printed and, after preparation, processed with an FSW-tool made of heat-resistant nickel-based superalloy ZhS6U according to four modes. Studies have shown that the material structure and properties are sensitive to changes in the tool loading force. In contrast, the additive material’s processing direction, relative to the columnar grain growth direction, has no effect. It is shown that increasing the axial load leads to forming a 𝛽-transformed structure and deteriorates the material strength. At the same time, compared to the additive material, the ultimate tensile strength increase during friction stir processing can achieve 34–69%.

Details

Title
Friction Stir Processing of Additively Manufactured Ti-6Al-4V Alloy: Structure Modification and Mechanical Properties
Author
Kalashnikov, Kirill  VIAFID ORCID Logo  ; Chumaevskii, Andrey; Kalashnikova, Tatiana  VIAFID ORCID Logo  ; Cheremnov, Andrey; Moskvichev, Evgeny  VIAFID ORCID Logo  ; Amirov, Alihan; Krasnoveikin, Vladimir; Kolubaev, Evgeny
First page
55
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621345855
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.