Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding the spatial variability in highly heterogeneous natural environments such as savannas and river corridors is an important issue in characterizing and modeling energy fluxes, particularly for evapotranspiration (ET) estimates. Currently, remote-sensing-based surface energy balance (SEB) models are applied widely and routinely in agricultural settings to obtain ET information on an operational basis for use in water resources management. However, the application of these models in natural environments is challenging due to spatial heterogeneity in vegetation cover and complexity in the number of vegetation species existing within a biome. In this research effort, small unmanned aerial systems (sUAS) data were used to study the influence of land surface spatial heterogeneity on the modeling of ET using the Two-Source Energy Balance (TSEB) model. The study area is the San Rafael River corridor in Utah, which is a part of the Upper Colorado River Basin that is characterized by arid conditions and variations in soil moisture status and the type and height of vegetation. First, a spatial variability analysis was performed using a discrete wavelet transform (DWT) to identify a representative spatial resolution/model grid size for adequately solving energy balance components to derive ET. The results indicated a maximum wavelet energy between 6.4 m and 12.8 m for the river corridor area, while the non-river corridor area, which is characterized by different surface types and random vegetation, does not show a peak value. Next, to evaluate the effect of spatial resolution on latent heat flux (LE) estimation using the TSEB model, spatial scales of 6 m and 15 m instead of 6.4 m and 12.8 m, respectively, were used to simplify the derivation of model inputs. The results indicated small differences in the LE values between 6 m and 15 m resolutions, with a slight decrease in detail at 15 m due to losses in spatial variability. Lastly, the instantaneous (hourly) LE was extrapolated/upscaled to daily ET values using the incoming solar radiation (Rs) method. The results indicated that willow and cottonwood have the highest ET rates, followed by grass/shrubs and treated tamarisk. Although most of the treated tamarisk vegetation is in dead/dry condition, the green vegetation growing underneath resulted in a magnitude value of ET.

Details

Title
Using Remote Sensing to Estimate Scales of Spatial Heterogeneity to Analyze Evapotranspiration Modeling in a Natural Ecosystem
Author
Nassar, Ayman 1   VIAFID ORCID Logo  ; Torres-Rua, Alfonso 1   VIAFID ORCID Logo  ; Hipps, Lawrence 2 ; Kustas, William 3   VIAFID ORCID Logo  ; McKee, Mac 1 ; Stevens, David 1 ; Nieto, Héctor 4   VIAFID ORCID Logo  ; Keller, Daniel 5 ; Gowing, Ian 6 ; Coopmans, Calvin 7 

 Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; [email protected] (A.T.-R.); [email protected] (M.M.); [email protected] (D.S.); Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA; [email protected] 
 Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA; [email protected] 
 USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA; [email protected] 
 Complutum Tecnologías de la Información Geográfica S.L. (COMPLUTIG), 28801 Alcala de Henares, Madrid, Spain; [email protected] 
 Utah Division of Wildlife Resources, Salt Lake City, UT 84116, USA; [email protected] 
 Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA; [email protected] 
 Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA; [email protected] 
First page
372
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621380647
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.