Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, freshwater resource contamination by non-point source pollution has become particularly prominent in China. To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports, identify sources of pollution, and analyze the pollution characteristics. As such, in this study, we established the modified export coefficient model based on rainfall and terrain to investigate the pollution sources and characteristics of non-point source total nitrogen (TN) and total phosphorus (TP) throughout the Huangqian Reservoir watershed—which serves as an important potable water source for the main tributary of the lower Yellow River. The results showed that: (1) In 2018, the non-point source total nitrogen (TN) and total phosphorus (TP) loads in the Huangqian Reservoir basin were 707.09 t and 114.42 t, respectively. The contribution ratios to TN export were, from high to low, rural life (33.58%), farmland (32.68%), other land use types (20.08%), and livestock and poultry breeding (13.67%). The contribution ratios to TP export were, from high to low, rural life (61.19%), livestock and poultry breeding (21.65%), farmland (12.79%), and other land use types (4.38%). The non-point source pollution primarily originated from the rural life of the water source protection zone. (2) Non-point source TN and TP pollution loads and load intensities showed significantly different spatial distribution patterns throughout the water source protection area. Specifically, their load intensities and loads were the largest in the second-class protected zone, which is the key source area of non-point source pollution. (3) When considering whether to invest in agricultural land fertilizer control or rural domestic sewage, waste, and livestock manure pollution control, the latter is demonstrably more effective. Thus, in addition to putting low-grade control on agricultural fertilizer loss, to rapidly and effectively improve potable water quality, non-point source pollution should, to a larger extent, also be controlled through measures such as establishing household biogas digesters, introducing village sewage treatment plants, and improving the recovery rate of rural domestic garbage. The research results discussed herein provide a theoretical basis for formulating a reasonable and effective protection plan for the Huangqian Reservoir water source and can potentially be used to do the same for other similar freshwater resources.

Details

Title
Research on the Non-Point Source Pollution Characteristics of Important Drinking Water Sources
Author
Hou, Lei 1 ; Zhou, Zhongyuan 2 ; Wang, Ruyan 3 ; Li, Jianxin 1 ; Dong, Fei 2 ; Liu, Jingqiang 1 

 College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai’an 271018, China; [email protected] (L.H.); [email protected] (J.L.) 
 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; [email protected] 
 Hydrological Center of Tai’an City, Tai’an 271001, China; [email protected] 
First page
211
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621383259
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.