It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Forests play a central role in addressing climate change, and accurate estimates of forest carbon are critical for the development of actions that reduce emissions from forests and that maximize sequestration by forests. Methodological challenges persist regarding how best to estimate forest carbon stocks and flux at regulatory-relevant scales. Using California, USA as a case study, we compare two approaches to stock-difference forest carbon estimation for aboveground live trees: one based on ground inventories and one on land cover classification of remotely-sensed data. Previous work using ground inventory data from the Forest Inventory and Analysis Program (FIA) showed net aboveground carbon (AGC) sequestration by live trees in California forests, while estimates using land cover classification from the Landscape Fire and Resource Management Planning Tools (Landfire) showed net reductions in live tree AGC over a similar time period. We examined the discrepancy by re-analyzing the FIA inventory data through the lens of a category-change analysis based on Landfire. This analysis showed more than 50% of the live tree AGC in fewer than 4% of Landfire-equivalent categories and that the overwhelming majority (>80%) of forest area did not change height category between measurement periods. Despite the lack of categorical change, the majority of FIA plots increased in both 95th percentile tree height and in live tree AGC. These findings suggest that an approach based on observing categorical changes risks undercounting AGC sequestration resulting from growth and thus overstating the relative importance of AGC reductions that result from disturbances. This would bias AGC flux estimates downward, leading us to validate the conclusion that live trees in California were a net sink of aboveground carbon in the decade ending in 2016. Our findings suggest an inventory-based or hybrid approach is preferable to methods that depend on categorical bins for estimating AGC in disturbance-prone forest ecosystems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer