It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Livestock grazing is an important component and driver of biodiversity in grassland ecosystems. While numerous studies and a few meta-analyses had been conducted on the response of single taxon diversity to grazing in grasslands, a synthesis of how multi-taxa diversity is affected has been largely missing, especially reflecting its changes along a grazing intensity gradient. We performed a comprehensive meta-analyses of 116 published studies on the species richness (SR) and Shannon−Wiener index (H′) of plants, arthropods, and microbes to examine the response of biodiversity to grazing intensity in temperate grasslands globally. This quantitative assessment showed that the response of SR and H′ to grazing intensity agreed with the intermediate disturbance hypothesis in grasslands; SR and H′ increased with light and moderate grazing intensities, while they decreased at heavy intensity. In addition, plant SR increased markedly with light and moderate grazing and declined with heavy grazing intensity; however, H′ increased at light intensity and declined at moderate and heavy intensities. Moreover, the SR and H′ of microbes were enhanced at light and moderate grazing and were significantly reduced with heavy intensity. The SR and H′ of arthropods monotonously declined with increasing grazing intensity. Importantly, structural equation modeling showed that grazing resulted in enhanced plant SR mainly through its negative effects on plant biomass. Grazing had negative effects on plant coverage and arthropod abundance so that arthropod SR declined with increased grazing intensity. Moreover, increased grazing intensity caused an increase in soil pH, decrease in soil moisture, and then a decrease in microbe SR. Our findings confirm that different taxa exhibit diverse responses to changes in grazing intensity, and the way that grazing intensity affects diversity also varied with different taxa. We strongly recommend considering the requirements of multi-taxa diversity when applying grazing management and including arthropods and microbes in monitoring schemes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Beijing Research & Development Center for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Shuguang Garden Middle Road No. 9, Haidian District, Beijing 100097, People’s Republic of China
2 School of Life Sciences, Capital Normal University, Beijing 100048, People’s Republic of China