It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Traditional scenic route planning only considers the shortest path, which ignores the information of scenic road conditions. As the most effective direct search method to solve the shortest path in static road network, A* algorithm can plan the optimal scenic route by comprehensively evaluating the weights of each expanded node in the gridded scenic area. However, A* algorithm has the problem of traversing more nodes and ignoring the cost of road in the route planning. In order to bring better travel experience to the travelers, the above factors are taken into account. This paper presents a path planning method based on the improved A* algorithm. Firstly, the heuristic function of the A* algorithm is weighted by exponential decay to improve the calculation efficiency of the algorithm. Secondly, in order to increase the practicality of the A* algorithm, the impact factors that road conditions is introduced to the evaluation function. Finally, the feasibility of the improved A* algorithm is verified through simulation experiments. Experimental results show that the improved A* algorithm can effectively reduce the calculation time and road cost.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Henan University of Technology, College of Information Science and Engineering, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066)
2 Anshun University, School of Resources and Environmental Engineering, Anshun, China (GRID:grid.488144.5) (ISNI:0000 0004 7417 3852)
3 Chinese Academy Sciences, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Lanzhou, China (GRID:grid.9227.e) (ISNI:0000000119573309)