It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies (GWAS) have identified over 175 loci associated with CAD. The majority of these loci are in non-coding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we hypothesized that a subset of the CAD GWAS risk loci are associated with the regulation of transcription in distinct SMC phenotypes. Here, we measured gene expression in SMCs isolated from the ascending aortas of 151 ethnically diverse heart transplant donors in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single nucleotide polymorphism (SNP) markers across the genome. We identified 4,910 expression and 4,412 splice quantitative trait loci (sQTL) that represent regions of the genome associated with transcript abundance and splicing. 3,660 of the eQTLs had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 of the eQTLs were SMC- and sex-specific, respectively. To identify the effector transcript(s) regulated by CAD GWAS loci, we used four distinct colocalization approaches and identified 84 eQTL and 164 sQTLs that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. Two CAD loci colocalized with a SMC sex-specific eQTL (AL160313.1 and TERF2IP) and another locus colocalized with SMC-specific eQTL (ALKBH8). Also, 27% and 37% of the sQTLs were unique to quiescent or proliferative SMCs, respectively. The most significantly associated CAD locus, 9p21, was an sQTL for the long non-coding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. Collectively, these results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.
Competing Interest Statement
Johan Bjorkegren is a shareholder in Clinical Gene Network AB that has an invested interest in STARNET. The remaining authors have nothing to disclose.
Footnotes
* https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193817
* https://virginia.box.com/s/t5e1tzlaqsf85z13o4ie2f9t1i0zfypd
* https://virginia.box.com/s/o81cxrj5xne3xem4au785mupikduuwbu
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





