Full Text

Turn on search term navigation

Copyright © 2021 Kim et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

ABSTRACT

Wild-type Escherichia coli was adapted to syntrophic growth with Methanobacterium formicicum for glycerol fermentation over 44 weeks. Succinate production by E. coli started to increase in the early stages of syntrophic growth. Genetic analysis of the cultured E. coli population by pooled sequencing at eight time points suggests that (i) rapid evolution occurred through repeated emergence of mutators that introduced a large number of nucleotide variants and (ii) many mutators increased to high frequencies but remained polymorphic throughout the continuous cultivation. The evolved E. coli populations exhibited gains both in fitness and succinate production, but only for growth under glycerol fermentation with M. formicicum (the condition for this laboratory evolution) and not under other growth conditions. The mutant alleles of the 69 single nucleotide polymorphisms (SNPs) identified in the adapted E. coli populations were constructed individually in the ancestral wild-type E. coli. We analyzed the phenotypic changes caused by 84 variants, including 15 nonsense variants, and found that FdrAD296Y was the most significant variant leading to increased succinate production. Transcription of fdrA was induced under anaerobic allantoin degradation conditions, and FdrA was shown to play a crucial role in oxamate production. The FdrAD296Y variant increased glyoxylate conversion to malate by accelerating oxamate production, which promotes carbon flow through the C4 branch, leading to increased succinate production.

IMPORTANCE Here, we demonstrate the ability of E. coli to perform glycerol fermentation in coculture with the methanogen M. formicicum to produce succinate. We found that the production of succinate by E. coli significantly increased during successive cocultivation. Genomic DNA sequencing, evaluation of relative fitness, and construction of SNPs were performed, from which FdrAD296Y was identified as the most significant variant to enable increased succinate production by E. coli. The function of FdrA is uncertain. In this study, experiments with gene expression assays and metabolic analysis showed for the first time that FdrA could be the “orphan enzyme” oxamate:carbamoyltransferase in anaerobic allantoin degradation. Furthermore, we demonstrate that the anaerobic allantoin degradation pathway is linked to succinate production via the glyoxylate pathway during glycerol fermentation.

Details

Title
An Escherichia coli FdrA Variant Derived from Syntrophic Coculture with a Methanogen Increases Succinate Production Due to Changes in Allantoin Degradation
Author
Kim Nam Yeun; Lee Yeon Joo; Park, Ji Won; Kim Su Nyung; Young, Kim E; Kim, Yuseob; Kim, Ok Bin
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2021
Publication date
2021
Publisher
American Society for Microbiology
e-ISSN
2379-5042
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2622973664
Copyright
Copyright © 2021 Kim et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.