Abstract

During metal additive manufacturing, the porosity of the as-built part deteriorates the mechanical property and even hinders the further application of metal additive manufacturing. Particularly, the mechanisms of keyhole pores associated with the keyhole fluctuation are not fully understood. To reveal the mechanisms of the keyhole pores formation, we adopt a multiphysics thermal-fluid flow model incorporating heat transfer, liquid flow, metal evaporation, Marangoni effect, and Darcy’s law to simulate the keyhole pore formation process, and the results are validated with the in situ X-ray images. The simulation results present the instant bubble formation due to the keyhole instability and motion of the instant bubble pinning on the solidification front. Furthermore, comparing the keyhole pore formation under different laser scanning speeds shows that the keyhole pore is sensitive to the manufacturing parameters. Additionally, the simulation under a low ambient pressure shows the feasibility of improving the keyhole stability to reduce and even avoid the formation of keyhole pores.

Details

Title
Mechanism of keyhole pore formation in metal additive manufacturing
Author
Wang, Lu 1   VIAFID ORCID Logo  ; Zhang, Yanming 1 ; Chia Hou Yi 1   VIAFID ORCID Logo  ; Yan, Wentao 1   VIAFID ORCID Logo 

 National University of Singapore, Department of Mechanical Engineering, Singapore, Singapore (GRID:grid.4280.e) (ISNI:0000 0001 2180 6431) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20573960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2623201477
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.