Abstract

Compressed Sensing (CS) avails mutual coherence metric to choose the measurement matrix that is incoherent with dictionary matrix. Random measurement matrices are incoherent with any dictionary, but their highly uncertain elements necessitate large storage and make hardware realization difficult. In this paper deterministic matrices are employed which greatly reduce memory space and computational complexity. To avoid the randomness completely, deterministic sub-sampling is done by choosing rows deterministically rather than randomly, so that matrix can be regenerated during reconstruction without storing it. Also matrices are generated by orthonormalization, which makes them highly incoherent with any dictionary basis. Random matrices like Gaussian, Bernoulli, semi-deterministic matrices like Toeplitz, Circulant and full-deterministic matrices like DFT, DCT, FZC-Circulant are compared. DFT matrix is found to be effective in terms of recovery error and recovery time for all the cases of signal sparsity and is applicable for signals that are sparse in any basis, hence universal._

Details

Title
Universal Measurement Matrix Design for Sparse and Co-Sparse Signal Recovery
Author
Hanumanthu, Sudha 1 ; Kumar, P Rajesh 1 

 ECE department, Andhra University College of Engineering, Visakhapatnam, India, 530003 
Pages
404-411
Section
Research Article
Publication year
2021
Publication date
2021
Publisher
Ninety Nine Publication
e-ISSN
13094653
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2623921299
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.