It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Compressed Sensing (CS) avails mutual coherence metric to choose the measurement matrix that is incoherent with dictionary matrix. Random measurement matrices are incoherent with any dictionary, but their highly uncertain elements necessitate large storage and make hardware realization difficult. In this paper deterministic matrices are employed which greatly reduce memory space and computational complexity. To avoid the randomness completely, deterministic sub-sampling is done by choosing rows deterministically rather than randomly, so that matrix can be regenerated during reconstruction without storing it. Also matrices are generated by orthonormalization, which makes them highly incoherent with any dictionary basis. Random matrices like Gaussian, Bernoulli, semi-deterministic matrices like Toeplitz, Circulant and full-deterministic matrices like DFT, DCT, FZC-Circulant are compared. DFT matrix is found to be effective in terms of recovery error and recovery time for all the cases of signal sparsity and is applicable for signals that are sparse in any basis, hence universal._
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 ECE department, Andhra University College of Engineering, Visakhapatnam, India, 530003