It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
: In order to reach the performance of the permanent magnet embedded rotor, the choice of magnet is very important. It must be thermally stabilized, and at this point, discussion of eddy current losses is necessary.To proceed with this study, a permanent magnet embedded synchronous motor used in the compressor currently being designed was selected. To derive the eddy current losses in the neodymium-magnets, current density was calculated through the equation. The eddy current loss was mathematically derived using the magnetic conductivity and residual magnetic flux density. Finally, comparative verification was performed through finite element analysis simulation. In this paper, eddy current losses in a N series magnet are mathematically analyzed and we perform comparative verification through simulation using finite element analysis. The Br value indicating the residual magnetic flux density is the lowest in N30 series and the largestin the N48 series. In the case of using the N30 series, the amount of magnetic flux that can be generated is low, so in order to increase the same output, the electric field must be increased by drawing more current from the stator winding. That is, the torque can be further increased. However, since the magnetic flux density experienced by the permanent magnet also increases, eddy current loss that may occur in the magnet eventually increases. There are also a method of using a split magnet to reduce eddy current losses. Inthe case of a permanent magnet holding a large residual magnetic flux density, the magnets loss is reduced, but there is a disadvantage that the price may be expensive. The losses in the permanent magnet are dissipated as heat. If the eddy current loss increases, the magnet demagnetizes, which in turn leads to a decrease in performance. In the selection of magnets, analysis of losses is essential.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer