It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deep Learning approach using probability distribution to natural language processing achieves significant accomplishment. However, natural languages have inherent linguistic structures rather than probabilistic distribution. This paper presents a new graph-based representation of syntactic structures called syntactic knowledge graph based on dependency relations. This paper investigates the valency theory and the markedness principle of natural languages to derive an appropriate set of dependency relations for the syntactic knowledge graph. A new set of dependency relations derived from the markers is proposed. This paper also demonstrates the representation of various linguistic structures to validate the feasibility of syntactic knowledge graphs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Financial Information Engineering, Seokyeong Univ., Seoul, Republic of Korea
2 Department of Computer Engineering, Hebei GEO Univ., China
3 Center for Educational Innovation, Wonkwang Univ., Iksan, Republic of Korea