It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Beam Energy Scan program at the Relativistic Heavy Ion Collider (RHIC) is searching for the QCD critical point. The main signal for the critical point is the kurtosis of the distribution of proton yields obtained on an event by event basis where one expects a peak at the critical point. However, its exact behavior is still an open question due to out-of-equilibrium effects and uncertainty in the equation of state. Here we use a simplistic hydrodynamic model that enforces strangeness-neutrality, selecting trajectories that pass close to the critical point. We vary the initial conditions to estimate the effect of out-of-equilibrium hydrodynamics on the kurtosis signal.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer