It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mechanical errors seriously affect the transmission performance of mechanical structure, especially for high-precision mechanical structure. With the development of virtual simulation technology, the performance test of mechanical structure in virtual environment is gradually applied. Under the background, this paper takes the movable tooth reducer as the research object and puts forward a virtual performance test method by combing test errors with virtual simulation technology. The tooth profile errors of key components of the reducer are obtained by optical scanning, and the simulation test is carried out. Meanwhile, the accuracy of the simulation test is verified by the implementation of vibration test. The results show that both the simulated vibration acceleration and the experimental test vibration acceleration show a double-peak variation trend, and the frequency difference between the two peaks is less than 5%. Therefore, the simulation test method proposed in this paper can effectively evaluate the performance of mechanical structures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer