Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Listeria monocytogenes is an important food-borne pathogen and a serious concern to food industries. Bacteriocins are antimicrobial peptides produced naturally by a wide range of bacteria mostly belonging to the group of lactic acid bacteria (LAB), which also comprises many strains used as starter cultures or probiotic supplements. Consequently, multifunctional strains that produce bacteriocins are an attractive approach to combine a green-label approach for food preservation with an important probiotic trait. Here, a collection of bacterial isolates from raw cow’s milk was typed by 16S rRNA gene sequencing and MALDI-Biotyping and supernatants were screened for the production of antimicrobial compounds. Screening was performed with live Listeria monocytogenes biosensors using a growth-dependent assay and pHluorin, a pH-dependent protein reporting membrane damage. Purification by cation exchange chromatography and further investigation of the active compounds in supernatants of two isolates belonging to the species Pediococcus acidilactici and Lactococcus garvieae suggest that their antimicrobial activity is related to heat-stable proteins/peptides that presumably belong to the class IIa bacteriocins. In conclusion, we present a pipeline of methods for high-throughput screening of strain libraries for potential starter cultures and probiotics producing antimicrobial compounds and their identification and analysis.

Details

Title
Identification of Potential Probiotics Producing Bacteriocins Active against Listeria monocytogenes by a Combination of Screening Tools
Author
Desiderato, Christian K 1 ; Sachsenmaier, Steffen 1 ; Ovchinnikov, Kirill V 2 ; Stohr, Jonas 1 ; Jacksch, Susanne 3   VIAFID ORCID Logo  ; Desef, Dominique N 1 ; Crauwels, Peter 1 ; Egert, Markus 3   VIAFID ORCID Logo  ; Diep, Dzung B 2 ; Goldbeck, Oliver 1 ; Riedel, Christian U 1   VIAFID ORCID Logo 

 Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; [email protected] (C.K.D.); [email protected] (S.S.); [email protected] (J.S.); [email protected] (D.N.D.); [email protected] (P.C.); [email protected] (O.G.) 
 Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway; [email protected] (K.V.O.); [email protected] (D.B.D.) 
 Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Campus Schwenningen, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; [email protected] (S.J.); [email protected] (M.E.) 
First page
8615
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2624241713
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.