Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most of the allometric models used to estimate tree aboveground biomass rely on tree diameter at breast height (DBH). However, it is difficult to measure DBH from airborne remote sensors, and is common to draw upon traditional least squares linear regression models to relate DBH with dendrometric variables measured from airborne sensors, such as tree height (H) and crown diameter (CD). This study explores the usefulness of ensemble-type supervised machine learning regression algorithms, such as random forest regression (RFR), categorical boosting (CatBoost), gradient boosting (GBoost), or AdaBoost regression (AdaBoost), as an alternative to linear regression (LR) for modelling the allometric relationships DBH = Φ(H) and DBH = Ψ(H, CD). The original dataset was made up of 2272 teak trees (Tectona grandis Linn. F.) belonging to three different plantations located in Ecuador. All teak trees were digitally reconstructed from terrestrial laser scanning point clouds. The results showed that allometric models involving both H and CD to estimate DBH performed better than those based solely on H. Furthermore, boosting machine learning regression algorithms (CatBoost and GBoost) outperformed RFR (bagging) and LR (traditional linear regression) models, both in terms of goodness-of-fit (R2) and stability (variations in training and testing samples).

Details

Title
Building Tree Allometry Relationships Based on TLS Point Clouds and Machine Learning Regression
Author
Aguilar, Fernando J 1   VIAFID ORCID Logo  ; Nemmaoui, Abderrahim 1   VIAFID ORCID Logo  ; Aguilar, Manuel A 1   VIAFID ORCID Logo  ; Peñalver, Alberto 2 

 Department of Engineering and Research Centre CIAIMBITAL, University of Almería, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; [email protected] (A.N.); [email protected] (M.A.A.) 
 Faculty of Technical Education for Development, Santiago de Guayaquil Catholic University, Av. Carlos Julio Arosamena, Guayaquil 090615, Ecuador; [email protected] 
First page
10139
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2624248114
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.