It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Simulation methods ensuring a level of fidelity higher than that of the ubiquitous Blade Element Momentum theory are increasingly applied to VAWTs, ranging from Lifting-Line methods, to Actuator Line or Computational Fluid Dynamics (CFD). The inherent complexity of these machines, characterised by a continuous variation of the angle of attack during the cycloidal motion of the airfoils and the onset of many related unsteady phenomena, makes nonetheless a correct estimation of the actual aerodynamics extremely difficult. In particular, a better understanding of the actual angle of attack during the motion of a VAWT is pivotal to select the correct airfoil and functioning design conditions. Moving from this background, a high-fidelity unsteady CFD model of a 2-blade H-Darrieus rotor was developed and validated against unique experimental data collected using Particle Image Velocimetry (PIV). In order to reconstruct the AoA variation during one rotor revolution, three different methods-detailed in the study-were then applied to the computed CFD flow fields. The resulting AoA trends were combined with available blade forces data to assess the corresponding lift and drag coefficients over one rotor revolution and correlate them with the most evident flow macro-structures and with the onset of dynamic stall.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Industrial Engineering, Universita degli Studi di Firenze, Via di Santa Marta 3, 50139, Firenze, Italy.
2 Delft University of Technology, Wind Energy, Kluyverweg 1, 2629HS Delft, The Netherlands.