Abstract

Simulation methods ensuring a level of fidelity higher than that of the ubiquitous Blade Element Momentum theory are increasingly applied to VAWTs, ranging from Lifting-Line methods, to Actuator Line or Computational Fluid Dynamics (CFD). The inherent complexity of these machines, characterised by a continuous variation of the angle of attack during the cycloidal motion of the airfoils and the onset of many related unsteady phenomena, makes nonetheless a correct estimation of the actual aerodynamics extremely difficult. In particular, a better understanding of the actual angle of attack during the motion of a VAWT is pivotal to select the correct airfoil and functioning design conditions. Moving from this background, a high-fidelity unsteady CFD model of a 2-blade H-Darrieus rotor was developed and validated against unique experimental data collected using Particle Image Velocimetry (PIV). In order to reconstruct the AoA variation during one rotor revolution, three different methods-detailed in the study-were then applied to the computed CFD flow fields. The resulting AoA trends were combined with available blade forces data to assess the corresponding lift and drag coefficients over one rotor revolution and correlate them with the most evident flow macro-structures and with the onset of dynamic stall.

Details

Title
An experimental and numerical analysis of the dynamic variation of the angle of attack in a vertical-axis wind turbine
Author
Melani, P F 1 ; Balduzzi, F 1 ; Brandetti, L 2 ; CJ Simão Ferreira 2 ; Bianchini, A 1 

 Department of Industrial Engineering, Universita degli Studi di Firenze, Via di Santa Marta 3, 50139, Firenze, Italy. 
 Delft University of Technology, Wind Energy, Kluyverweg 1, 2629HS Delft, The Netherlands. 
Publication year
2020
Publication date
Sep 2020
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2624550357
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.