Abstract

Many pore-forming proteins originating from pathogenic bacteria are toxic against agricultural pests. They are the key ingredients in several pesticidal products for agricultural use, including transgenic crops. There is an urgent need to identify novel pore-forming proteins to combat development of resistance in pests to existing products, and to develop products that are effective against a broader range of pests. Existing computational methodologies to search for these proteins rely on sequence homology-based approaches. These approaches are based on similarities between protein sequences, and thus are limited in their usefulness for discovering novel proteins. In this paper, we outline a novel deep learning model trained on pore-forming proteins from the public domain. We compare different ways of encoding protein information during training, and contrast it with traditional approaches. We show that our model is capable of identifying known pore formers with no sequence similarity to the proteins used to train the model, and therefore holds promise for identifying novel pore formers.

Details

Title
A deep learning model to detect novel pore-forming proteins
Author
Theju, Jacob 1 ; Kahn, Theodore W 1 

 BASF Corporation, Morrisville, USA (GRID:grid.418235.9) (ISNI:0000 0004 4648 4928) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2626121672
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.