Full Text

Turn on search term navigation

© 2022 Lam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We evaluate the efficacy of environmental DNA (eDNA) techniques to locate wild populations and estimate the population size of the endangered big-headed turtle (Platysternon megacephalum) in Hong Kong. The results from this study are important for identifying priority sites for protection and further research. Additionally, we assess the impact of two environmental variables (temperature and pH) on eDNA quantity. We surveyed 34 streams for three years, sampling four times each year. Four new populations were first identified with eDNA analysis, and then verified by field surveys. Our multi-year survey highlights that eDNA detection can be inconsistent over time, even in streams with known populations. There was no significant relationship between eDNA quantity and the environmental variables tested. Lastly, our results suggest that eDNA methods remain promising to estimate population size, since number of positive detections were positively correlated with population size in streams with known populations. We conclude that eDNA methods are powerful, but care must be taken when interpreting field results as they are affected by species ecology and environmental conditions.

Details

Title
Using eDNA techniques to find the endangered big-headed turtle (Platysternon megacephalum)
Author
Lam, Ivan P Y; Yik-Hei Sung; Fong, Jonathan J
First page
e0262015
Section
Research Article
Publication year
2022
Publication date
Feb 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2626214484
Copyright
© 2022 Lam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.