It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Lysophospholipids are bioactive lipids and can signal through G-protein-coupled receptors (GPCRs). The best studied lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). The mechanisms of lysophospholipid recognition by an active GPCR, and the activations of lysophospholipid GPCR–G-protein complexes remain unclear. Here we report single-particle cryo-EM structures of human S1P receptor 1 (S1P1) and heterotrimeric Gi complexes formed with bound S1P or the multiple sclerosis (MS) treatment drug Siponimod, as well as human LPA receptor 1 (LPA1) and Gi complexes in the presence of LPA. Our structural and functional data provide insights into how LPA and S1P adopt different conformations to interact with their cognate GPCRs, the selectivity of the homologous lipid GPCRs for S1P versus LPA, and the different activation mechanisms of these GPCRs by LPA and S1P. Our studies also reveal specific optimization strategies to improve the MS-treating S1P1-targeting drugs.
Liu et al. report structures of human sphingosine 1-phosphate (S1P) receptor 1 (S1P1) in complex with Gi and S1P or the multiple sclerosis (MS) drug Siponimod, as well as human lysophosphatidic acid (LPA) receptor 1 (LPA1) in complex with Gi and LPA, revealing distinct conformations of the lysophospholipids interacting with their cognate GPCRs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Weill Cornell Medical College of Cornell University, Department of Physiology and Biophysics, New York, USA (GRID:grid.5386.8) (ISNI:000000041936877X)
2 Memorial Sloan Kettering Cancer Center, Structural Biology Program, New York, USA (GRID:grid.51462.34) (ISNI:0000 0001 2171 9952)
3 Arizona State University, School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Tempe, USA (GRID:grid.215654.1) (ISNI:0000 0001 2151 2636)
4 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA (GRID:grid.479509.6) (ISNI:0000 0001 0163 8573)