Full text

Turn on search term navigation

© 2022 Xiong, Wei. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

One of the major reasons that limit the practical applications of a brain-computer interface (BCI) is its long calibration time. In this paper, we propose a novel approach to reducing the calibration time of motor imagery (MI)-based BCIs without sacrificing classification accuracy. The approach aims to augment the training set size of a new subject by generating artificial electroencephalogram (EEG) data from a few training trials initially available. The artificial EEG data are obtained by first performing empirical mode decomposition (EMD) and then mixing resulting intrinsic mode functions (IMFs). The original training trials are aligned to common reference point with Euclidean alignment (EA) method prior to EMD and pooled together with artificial trials as the expended training set, which is input into a linear discriminant analysis (LDA) classifier or a logistic regression (LR) classifier. The performance of the proposed algorithm is evaluated on two motor imagery (MI) data sets and compared with that of the algorithm trained with only real EEG data (Baseline) and the algorithm trained with expanded EEG data by EMD without data alignment. The experimental results showed that the proposed algorithm can significantly reduce the amount of training data needed to achieve a given performance level and thus is expected to facilitate the real-world applications of MI-based BCIs.

Details

Title
Reducing calibration time in motor imagery-based BCIs by data alignment and empirical mode decomposition
Author
Xiong, Wei; Wei, Qingguo
First page
e0263641
Section
Research Article
Publication year
2022
Publication date
Feb 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2626888464
Copyright
© 2022 Xiong, Wei. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.