Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Acute myeloid leukemia (AML) is a cancer of blood and bone marrow that causes rapid production of abnormal red and white blood cells. Once established, the cancer cells communicate through a complex set of molecular interactions with neighboring cells in order to survive, spread rapidly, and evade detection and destruction by the body’s immune system. In this study, a systematic review produced a comprehensive set of critical molecular interactions that was then organized into molecular “systems architecture” to map the communications between cancer cells and neighboring cells. This systems architecture may aid in identifying effective targets that disrupt communication between the cancer cells and the neighboring environment, leading to effective treatment strategies.

Abstract

A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molecular interactions between the cancer cell and the tumor microenvironment, including endothelial cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells (e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells). This molecular systems architecture provides a layered understanding of intra- and inter-cellular interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular systems architecture may be utilized for target identification and the discovery of single and combination therapeutics and strategies to treat AML.

Details

Title
Molecular Systems Architecture of Interactome in the Acute Myeloid Leukemia Microenvironment
Author
Shiva Ayyadurai, V A 1 ; Prabhakar Deonikar 1 ; McLure, Kevin G 2 ; Sakamoto, Kathleen M 3 

 Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA; [email protected] 
 Ermaris Bio, Inc., Oakland, CA 94618, USA; [email protected] 
 Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; [email protected] 
First page
756
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627530415
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.