Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective: This study aimed to develop and validate an automated artificial intelligence (AI)-driven quantification of pleural plaques in a population of retired workers previously occupationally exposed to asbestos. Methods: CT scans of former workers previously occupationally exposed to asbestos who participated in the multicenter APEXS (Asbestos PostExposure Survey) study were collected retrospectively between 2010 and 2017 during the second and the third rounds of the survey. A hundred and forty-one participants with pleural plaques identified by expert radiologists at the 2nd and the 3rd CT screenings were included. Maximum Intensity Projection (MIP) with 5 mm thickness was used to reduce the number of CT slices for manual delineation. A Deep Learning AI algorithm using 2D-convolutional neural networks was trained with 8280 images from 138 CT scans of 69 participants for the semantic labeling of Pleural Plaques (PP). In all, 2160 CT images from 36 CT scans of 18 participants were used for AI testing versus ground-truth labels (GT). The clinical validity of the method was evaluated longitudinally in 54 participants with pleural plaques. Results: The concordance correlation coefficient (CCC) between AI-driven and GT was almost perfect (>0.98) for the volume extent of both PP and calcified PP. The 2D pixel similarity overlap of AI versus GT was good (DICE = 0.63) for PP, whether they were calcified or not, and very good (DICE = 0.82) for calcified PP. A longitudinal comparison of the volumetric extent of PP showed a significant increase in PP volumes (p < 0.001) between the 2nd and the 3rd CT screenings with an average delay of 5 years. Conclusions: AI allows a fully automated volumetric quantification of pleural plaques showing volumetric progression of PP over a five-year period. The reproducible PP volume evaluation may enable further investigations for the comprehension of the unclear relationships between pleural plaques and both respiratory function and occurrence of thoracic malignancy.

Details

Title
Deep Learning for the Automatic Quantification of Pleural Plaques in Asbestos-Exposed Subjects
Author
Benlala, Ilyes 1   VIAFID ORCID Logo  ; Baudouin Denis De Senneville 2 ; Dournes, Gael 1 ; Menant, Morgane 3 ; Gramond, Celine 3   VIAFID ORCID Logo  ; Thaon, Isabelle 4   VIAFID ORCID Logo  ; Clin, Bénédicte 5   VIAFID ORCID Logo  ; Brochard, Patrick 6 ; Gislard, Antoine 7 ; Andujar, Pascal 8 ; Chammings, Soizick 9 ; Gallet, Justine 3 ; Lacourt, Aude 3 ; Delva, Fleur 3   VIAFID ORCID Logo  ; Paris, Christophe 10 ; Ferretti, Gilbert 11 ; Pairon, Jean-Claude 8   VIAFID ORCID Logo  ; Laurent, François 1   VIAFID ORCID Logo 

 Faculté de Médecine, Université de Bordeaux, 33000 Bordeaux, France; [email protected] (G.D.); [email protected] (P.B.); [email protected] (F.L.); Service d’Imagerie Médicale Radiologie Diagnostique et Thérapeutique, CHU de Bordeaux, 33000 Bordeaux, France; Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Université de Bordeaux, 33000 Bordeaux, France 
 Mathematical Institute of Bordeaux (IMB), CNRS, INRIA, Bordeaux INP, UMR 5251, Université de Bordeaux, 33400 Talence, France; [email protected] 
 Epicene Team, Bordeaux Population Health Research Center, INSERM UMR 1219, Université de Bordeaux, 33000 Bordeaux, France; [email protected] (M.M.); [email protected] (C.G.); [email protected] (J.G.); [email protected] (A.L.); [email protected] (F.D.) 
 Centre de Consultation de Pathologies Professionnelles, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France; [email protected] 
 Service de Santé au Travail et Pathologie Professionnelle, CHU Caen, 14000 Caen, France; [email protected]; Faculté de Médecine, Université de Caen, 14000 Caen, France 
 Faculté de Médecine, Université de Bordeaux, 33000 Bordeaux, France; [email protected] (G.D.); [email protected] (P.B.); [email protected] (F.L.); Service de Médecine du Travail et de Pathologies Professionnelles, CHU de Bordeaux, 33000 Bordeaux, France 
 Faculté de Médecine, Normandie Université, UNIROUEN, UNICAEN, ABTE, 76000 Rouen, France; [email protected]; Centre de Consultations de Pathologie Professionnelle, CHU de Rouen, CEDEX, 76031 Rouen, France 
 Equipe GEIC20, INSERM U955, 94000 Créteil, France; [email protected] (P.A.); [email protected] (J.-C.P.); Faculté de Santé, Université Paris-Est Créteil, 94000 Créteil, France; Service de Pathologies Professionnelles et de l’Environnement, Centre Hospitalier Intercommunal Créteil, Institut Santé-Travail Paris-Est, 94000 Créteil, France; Institut Interuniversitaire de Médecine du Travail de Paris-Ile de France, 94000 Créteil, France; [email protected] 
 Institut Interuniversitaire de Médecine du Travail de Paris-Ile de France, 94000 Créteil, France; [email protected] 
10  Service de Santé au Travail et Pathologie Professionnelle, CHU Rennes, 35000 Rennes, France; [email protected]; Institut de Recherche en Santé, Environnement et Travail, INSERM U1085, 35000 Rennes, France 
11  INSERM U 1209 IAB, 38700 La Tronche, France; [email protected]; Domaine de la Merci, Faculté de Médecine, Université Grenoble Alpes, 38706 La Tronche, France; Service de Radiologie Diagnostique et Interventionnelle Nord, CHU Grenoble Alpes, CS 10217, 38043 Grenoble, France 
First page
1417
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627540263
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.