1. Introduction
1.1. Oncolytic Viruses
Oncolytic virotherapy centers on engineered viruses that target neoplastic cells. Oncolytic viruses (OVs) have shown great promise in the treatment of various cancer types due to their selective replication in cancer cells and the subsequent induction of tumor cell death [1,2]. This is possibly secondary to tumor cells’ impaired mechanisms of viral clearance [3,4,5,6] and/or through the genetic modification of OVs which enhance malignant cell selectivity [7]. Once in the tumor cells, OVs work through a mixed mechanism of induction of oncolysis and stimulation of antitumor immune activity [1,8]. Direct destruction of cells occurs, and lysis leads to release of viral particles, cytokines, and other cellular contents, and ultimately the induction of an immune response [1]. OVs can also be engineered to enhance direct tumor lysis through the delivery of suicide genes [9,10,11]. Furthermore, viral infection stimulates antitumor immune activity; after cell lysis, danger-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), and cytokines are released that simulate the innate immune system [1]. Antigen presenting cells (APCs) recruit CD4+ and CD8+ T cells to create an adaptive immune response against infected tumor cells [12]. Immunogenic cell death (ICD) is a more recently discovered cell death modality that involves specific, timed changes to the cell surface (CRT expression) followed by release of soluble DAMPs (e.g., HMGB1, HSP). Importantly, this increases the immunogenicity of dying/dead cancer cells, and has the ability to potentiate adaptive immune responses and target residual cancer cells/tissues [13,14].
Almost all oncolytic viruses have some preference for infecting tumor cells over normal cells [15]. However, genetic engineering can be used to enhance OVs’ natural preference for cancer cells. For example, viruses can be re-targeted (genetically altered for tumor-specific viral entry) by preventing replication in non-dividing cells [7]. OVs can also be engineered to be armed (containing therapeutic transgene variants) to increase immunogenic reactions [16]. For example, arming HSV with interleukin-12 (IL-12) [17] or IL-4 [18] has demonstrated increased potency.
For the treatment of glioma, three main viruses have been studied extensively: HSV, poliovirus, and adenovirus. HSV is the most broadly studied, with clinical trials in many cancer types including GBM [16]. HSV an attractive OV candidate for many reasons, including a large and highly stable genome, its potent cytolytic capability, high immunogenicity, and a convenient genome for genetic engineering; the availability of effective anti-herpetic drugs to treat adverse reactions is an added benefit [16,19]. Another common virus studied for glioma virotherapy is poliovirus. Therapeutic poliovirus (PVSRIPO) was created by combining a nonpathogenic poliovirus with a rhinovirus [20,21]. PVSRIPO demonstrated successful innate immune stimulation and cytotoxic cell recruitment in GBM [22,23]. Finally, adenoviruses have also been exploited for use in glioma. Adenovirus can function as a nonintegrating vector with relatively high capacity for gene delivery, including delivery of suicide genes [24,25,26,27]. It demonstrated successful induction of immune responses in GBM and caused direct oncolysis and autophagy [28].
Viral infection by any OV creates both an antiviral and antitumor response. In addition to direct oncolysis, OVs stimulate a host immune response. While tumor inflammation and immune cell recruitment is known to create an antitumor effect, it also prevents viral replication and distribution through its antiviral properties. The relative impact of these forces varies by cancer type [29]. Immune cell evasion is a classic characteristic of GBM [30], and OVs aim to reverse this by exposing the tumor to the innate and ultimately adaptive immune system.
1.2. Glioma-Associated Macrophages and Their Dichotomy
Tumor-associated macrophages/microglia (TAMs) are the most abundant non-neoplastic cell in the GBM tumor microenvironment (TME) and have been investigated as potential causes of OV therapy failure [31]. TAMs, which consist of both brain-resident microglia and bone marrow-derived myeloid cells from the periphery, constitute about 40% of the tumor mass in GBMs [32]. TAMs in the TME enhance tumor cell migration and invasion through secretion of chemotactic factors, enzymes, and cytokines [33,34]. As a result, there is a positive correlation between the number of TAMs and the malignancy of the brain tumor [35].
Classically, TAMs have been described in the M1/M2 dichotomy [36]. Although TAM phenotypes exist on a spectrum and are not truly dichotomous [37,38], this simplified classification provides a framework through which to understand their competing actions. Figure 1 shows a schematic representation of TAM polarization as well as the interaction with tumor growth and OVs. The classically activated M1 phenotype is activated by interferon gamma (IFN-γ) and lipopolysaccharides (LPS) through signal transducer and activator of transcription 1 (STAT1) activity [12,39]. M1 TAMs promote strong IL-12 mediated T helper 1 (Th1) responses and activate natural killer (NK) cells through pro-inflammatory cytokine production, including tumor-necrosis factor alpha (TNF-α), IL-β, IL-6, IL-8, IL-12, and IL-23, regulated in part by the nuclear factor kappa B (NF-κB) pathway [12,37,40,41,42]. They are also capable of phagocytosis and antigen processing and presentation, making them a bridge between innate and adaptive immune systems [12,39,43]. This creates a systemic and durable immunity to tumor cells [8].
M2 phenotype TAMs are alternatively activated by peroxisome proliferator-activated receptor-γ (PPARγ) and STAT6, which suppress the NF-κB pathway [39]. They promote strong Th2-associated effector functions and induce regulatory T cells (Tregs). Through the production of IL-1RA, IL-10, vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGF-β), M2s stimulate tissue remodeling and tumor development [37,39,44,45,46,47,48]. They also lead to the resolution of inflammation through high endocytic clearance capacities and trophic factor synthesis, angiogenesis, and tumor proliferation and progression [12,33]. Overall, the phenotypes are primarily regulated through either interferon regulatory factor 4 (IRF4) or IRF5, competing through Toll-like receptor (TLR) signaling, and polarizing cells towards the M2 or M1 phenotype, respectively [49,50]. This demonstrates that the in vivo TAM phenotype is based on the dominant cytokines, trophic factors, and proteins in the microenvironment.
1.3. Glioma-Associated Macrophages and Immunosuppression
In GBM, there is general immunosuppression in the TME. Glioma cells and TAMs work symbiotically—glioma cells attract TAM infiltration and TAMs promote glioma growth and invasiveness [41,51,52]. TAMs are recruited to the TME by chemoattractants from glioma cells, such as CC chemokine ligand 2 (CCL2)[53,54] and soluble colony-stimulating factor 1 (sCSF-1) [55,56]. Polarization to M2 occurs through a variety of cytokines, including IL-10, IL-4, IL-6, macrophage colony stimulating factor (M-CSF), TGF-β, and prostaglandin E2, and the TAMs become immunosuppressive [37,51,52,57,58,59]. Interactions between TAMs and other immune cells in the TME provides additional mechanisms of immunosuppression. TAMs produce chemokines that recruit Tregs, and they both secrete IL-10, which interferes with IFN-γ production and impairs infiltrating T cells [60,61]. TAMs also upregulate several surface molecules that inhibit T cell activation and induce T cell apoptosis including cluster of differentiation 95 (CD95), CD70, and programmed cell death ligand 1 (PD-L1) [30,62]. This leads to fewer tumor-infiltrating immune effector cells (Teffector) and prevents an immune attack against the glioma [30,62].
2. Discussion
2.1. Polarizing TAMs towards the M1 Phenotype
Polarizing TAMs towards the M1 phenotype and creating a pro-inflammatory TME is a key mechanism of the OV-induced antitumor effect. This polarization and increased inflammatory response are seen in a variety of viruses in GBM, including HSV [63,64,65,66], adenoviruses [67,68,69], parvoviruses [70,71,72], and vaccinia viruses [73]. This coincides with an increased Teffector to Treg ratio, likely related to an IFN-γ influx [65]. Previous studies have utilized this mechanism in altering viruses to enhance the M1 phenotypic shift. IL-12 is the most commonly used cytokine to enhance antitumor efficacy of OVs [74,75]. As seen in Figure 1, IL-12 plays a role in the antitumor response, through induction of Th1 differentiation, stimulation of NK growth and cytotoxicity, IFN-γ release, and angiogenesis inhibition [75,76]. Arming HSV with IL-12 has demonstrated increase in IFN-γ and reduction in Tregs in tumors, along with increased survival in murine models [17,76,77,78,79]. Other cytokines have also been used, including FMS-like tyrosine kinase 3 ligand (Flt3L), which is associated with increases in intratumoral dendritic cells and CD8+ T cells [80,81] and improves survival in glioma-bearing mice [82]. The addition of IL-4 to HSV also increased infiltration of macrophages and CD4+ and CD8+ T cells into murine models of intracranial glioma and prolonged survival [18]. In contrast however, transfection of HSV expressing IL-10, which is anti-inflammatory, did not produce a significant survival advantage compared to saline-treated controls in the same animal model and did not result in increased infiltration of CD8+ T cells [18].
2.2. Combination Therapies with Checkpoint Inhibitors
Combination therapies have also been explored to enhance immunostimulation with OVs. Checkpoint inhibitors, such as anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) and anti-PD-1, have demonstrated efficacy in many cancer types. They enhance activation of T helper cells and effector cells while suppressing Tregs [83]. Anti-CTLA-4 and anti-PD-1 antibodies work through distinct and non-redundant inhibitory pathways on immune cells [65,83]. Unfortunately, they have not resulted in significant benefits in GBM clinical trials [84,85]. This is related in part to the immunologically “cold” and highly immunosuppressive TME [86]. However, triple combination of HSV armed with IL-12 along with anti-CTLA-4 and anti-PD-L1 increased influx of macrophages and M1 polarization and was very effective in curing both murine glioma models including aggressive carcinogen-induced tumors [65,87]. Immune checkpoint modulation has also been used in adenovirus armed with the immune costimulatory OX40 ligand, which activates lymphocytes and leads to proliferation of CD8+ T cells [88]. Adding anti-PD-L1 antibody with this OV also demonstrated significantly increased survival in mice with gliomas [88]. Adenovirus armed with costimulatory ligand glucocorticoid-induced tumor necrosis factor receptor (TNFR) family-related ligand (GITRL) also increased CD8+ T cell infiltration and increased survival in mice with gliomas [89]. Clearly, the inflammatory role of M1 TAMs, which go hand in hand with the various mechanisms of armed viruses, is crucial to effectiveness of OVs.
2.3. Combination Therapies with Immunosuppressive Medications
However, TAMs and M1 polarization also play a detrimental role in OV efficacy through their antiviral activity, which is not virus-specific [31]. Gliomas treated with HSV have shown intratumoral clearance of over 80% of viral particles shortly after delivery, which is associated with up-regulation and infiltration of TAMs [90,91]. TAMs can directly uptake viruses through endocytosis or reduce replication through secretion of antiviral cytokines [64,66,92]. Upon injection, there is an immediate M1 antiviral reaction competing with glioma cells for virus uptake [93,94]. Within 72 h of HSV injection, there is a significant decrease in the volume of tumor cells that contains HSV-mediated gene expression [91]. However, depletion of the innate immune response including peripheral phagocytic cells and brain microglia via immunosuppressants can enhance intratumoral uptake and spread of OV [31,91]. TAMs are also able to create a non-permissive barrier that prevents OV replication and dissemination, which leads to viral gene silencing [64]. This detrimental TAM-induced antiviral effect has been supported in studies that demonstrated that blocking STAT1/3 activity rescues OV replication and enhances the therapeutic efficacy of oncolytic virotherapy [64]. In addition, chemical ablation of TAMs in glioma-bearing rodent models enhanced the antitumoral effects of HSV [31]. Decreasing TAMs, despite their antitumoral proinflammatory effects, can increase OV uptake, replication, and efficacy.
Due to the known deleterious effects of TAMs related to early viral clearance, many studies have aimed to suppress recruitment of TAMs with OVs. For example, cyclophosphamide inhibits the production of IFN-γ by natural killer (NK) cells and reduces the concentration of TAMs [91]. Even residual TAMs demonstrated suppressed expression of antiviral cytokines [95,96]. This led to a 10-fold increase in intratumoral OV gene expression [91]. Preadministration of cyclophosphamide in athymic mouse models of human glioma, caused increased OV uptake and intratumor distribution allowing for reduced OV doses, reduced tumor burden, and increased survival [97]. Other ways to decrease IFN signaling and pro-inflammatory cytokine induction in tumor cells, therefore limiting TAM recruitment, includes administration of rapamycin to block integrin beta 1 receptors [98], which are expressed on the cell surfaces of macrophages [99]; pretreatment with the histone deacetylase inhibitor valproic acid [100]; or administration of cellular communication network factor 1 (CCN1) antibodies [101,102,103]. The addition of TGF-β can also suppress TAM recruitment by dampening the innate immune response through cell growth inhibition and apoptosis via transcriptional induction of genes, such as cyclin-dependent kinase inhibitors (CDKIs) [104,105]. This inhibits NK and TAM recruitment, activation, and function, thereby enhancing OV replication [105].
Other techniques have focused more on inhibiting TAMs that are present in the TME. Clodronate encapsulated in liposomes is taken up by phagocytic cells and results in intracellular accumulation and TAM apoptosis, thereby depleting the TAM population [106,107,108]. In murine GBM, this led to a five-fold increase in viral replication [31]. M1 TAM mechanisms can also be restricted, such as blocking brain angiogenesis inhibitor [63,109] or STAT1/3 activity [43,64,110]. In addition, depleting NK cells, which coordinate TAM activation in response to OV, has a beneficial effect [105,111].
Finally, some studies have investigated ways to bypass the antagonizing effects TAMs have on virotherapy regardless of their presence. OVs can be transported with carrier cells, protecting them from neutralization and opsonization and assisting with homing to the tumor site in studies with systemic injection [112,113,114,115,116]. Overall, finding ways preclinically to restrict TAM function, whether through reduced recruitment, reduced activation and function, or preventing interactions with OVs demonstrates that inhibiting TAMs has potential to benefit OV efficacy.
3. Future Directions
One of the key next steps is to investigate the combined mechanisms that prevent initial antiviral TAM actions, while still allowing for later TAM-directed antitumor responses. The balance between these two opposing functions in part determines the efficacy of OV therapy. However, modulating these responses, which often encompass overlapping immunological pathways, is challenging and poorly understood [8,117]. It is possible that many of the previously mentioned tactics can be combined to create both antiviral and antitumor responses. For example, selective and transient immunomodulation with immune-inhibiting therapeutics may still allow for sufficient tumoral infection to induce a robust antitumor response.
4. Conclusions
Understanding the mechanisms that inhibit and potentiate oncolytic virotherapy is necessary for this promising therapy to reach its full potential. Overall, TAMs function in OV therapy as a double-edged sword. They play a crucial role in the immune stimulation that creates the antitumor response generated by OVs. Initial innate immune responses orchestrate subsequent lasting adaptive immune responses. However, TAMs also inhibit efficient intratumoral viral distribution. Both immunostimulatory and immunosuppressant adjuvants have shown benefits in OV research. More research on combination therapies is necessary to find cooperative tactics. Harnessing TAMs to promote both antiviral and antitumor effects will optimize OV efficacy in the future.
Conceptualization, J.D.B. and G.K.F.; writing—original draft preparation, S.E.B., J.D.B. and A.D.K.; writing—review and editing, F.A.G., N.V.K., O.A., Y.L., P.P.P., T.R.S., E.A.C., G.F.K. and J.D.B.; project administration, O.A., T.R.S., E.A.C., G.F.K. and J.D.B.; All authors have read and agreed to the published version of the manuscript.
GKF supported by Food and Drug Administration (R01FD006368 and R01FD005379), Cannonball Kids can-cer Foundation, and Hyundai Hope on Wheels. GKF and JDB supported by the Rally Foundation for Child-hood Cancer Research, CureSearch for Children’s Cancer, The V Foundation, Andrew McDonough B+ Foundation, the National Pediatric Cancer Foundation, and the Pediatric Cancer Research Foundation.
Not applicable.
Not applicable.
Not applicable.
J.D.B. has an equity position in Avidea Technologies, Inc., which is commercializing polymer-based drug delivery technologies for immunotherapeutic applications and has an equity position in Treovir LLC, an oHSV clinical stage company and is a member of the POCKiT Diagnostics Board of Scientific Advisors. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 1. Schematic representation of the interaction between M1/M2 tumor-associated macrophage/microglia (TAM) polarization with oncolytic viral distribution and tumor growth in glioblastoma multiforme. Elements of the microenvironment influence polarization between TAM subsets of immuno-suppressive M2 and immune-stimulatory M1. Tumors polarize TAMs towards the M2 phenotype, which support tumor growth. Oncolytic virotherapy (OV) inhibits tumor growth through two main mechanisms: direct oncolysis and the antitumor response. The latter is a result of virus-induced polarization towards the M1 phenotype, which creates an immune response against tumor growth. However, this also stimulates an antiviral response, limiting the beneficial effects of OVs. IL interleukin, M-CSF macrophage colony stimulating factor, TGF-β transforming growth factor beta, PGE2 prostaglandin E2, IFN-γ interferon gamma, LPS lipopolysaccharide, Th T helper, Treg T regulatory, VEGF vascular endothelial growth factor, CD cluster of differentiation, PD-L1 programmed cell death ligand 1, and TNF-α tumor necrosis factor alpha.
References
1. Cook, M.; Chauhan, A. Clinical Application of Oncolytic Viruses: A Systematic Review. Int. J. Mol. Sci.; 2020; 21, E7505. [DOI: https://dx.doi.org/10.3390/ijms21207505] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33053757]
2. Russell, S.J.; Peng, K.-W.; Bell, J.C. Oncolytic Virotherapy. Nat. Biotechnol.; 2012; 30, pp. 658-670. [DOI: https://dx.doi.org/10.1038/nbt.2287]
3. Clemens, M.J. Targets and Mechanisms for the Regulation of Translation in Malignant Transformation. Oncogene; 2004; 23, pp. 3180-3188. [DOI: https://dx.doi.org/10.1038/sj.onc.1207544] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15094767]
4. Yu, Z.; Chan, M.-K.; O-charoenrat, P.; Eisenberg, D.P.; Shah, J.P.; Singh, B.; Fong, Y.; Wong, R.J. Enhanced Nectin-1 Expression and Herpes Oncolytic Sensitivity in Highly Migratory and Invasive Carcinoma. Clin. Cancer Res.; 2005; 11, pp. 4889-4897. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-05-0309] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16000587]
5. Anderson, B.D.; Nakamura, T.; Russell, S.J.; Peng, K.-W. High CD46 Receptor Density Determines Preferential Killing of Tumor Cells by Oncolytic Measles Virus. Cancer Res.; 2004; 64, pp. 4919-4926. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-04-0884]
6. Aghi, M.; Visted, T.; Depinho, R.A.; Chiocca, E.A. Oncolytic Herpes Virus with Defective ICP6 Specifically Replicates in Quiescent Cells with Homozygous Genetic Mutations in P16. Oncogene; 2008; 27, pp. 4249-4254. [DOI: https://dx.doi.org/10.1038/onc.2008.53]
7. Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental Therapy of Human Glioma by Means of a Genetically Engineered Virus Mutant. Science; 1991; 252, pp. 854-856. [DOI: https://dx.doi.org/10.1126/science.1851332]
8. Hofman, L.; Lawler, S.E.; Lamfers, M.L.M. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses; 2021; 13, 1570. [DOI: https://dx.doi.org/10.3390/v13081570]
9. Naik, S.; Russell, S.J. Engineering Oncolytic Viruses to Exploit Tumor Specific Defects in Innate Immune Signaling Pathways. Expert Opin. Biol. Ther.; 2009; 9, pp. 1163-1176. [DOI: https://dx.doi.org/10.1517/14712590903170653]
10. New, P.Z.; Baskin, D.; Trask, T.; Cavaliere, R.; Chaudhury, A.R.; Bell, S.; Aguilar, L.K.; Aguilar-Cordova, E.; Chiocca, A.; Wong, K. Radiographic and Immunologic Responses to Adjuvant Immunotherapy for Malignant Gliomas. J. Clin. Oncol.; 2008; 26, 2039. [DOI: https://dx.doi.org/10.1200/jco.2008.26.15_suppl.2039]
11. Rainov, N.G. A Phase III Clinical Evaluation of Herpes Simplex Virus Type 1 Thymidine Kinase and Ganciclovir Gene Therapy as an Adjuvant to Surgical Resection and Radiation in Adults with Previously Untreated Glioblastoma Multiforme. Hum. Gene Ther.; 2000; 11, pp. 2389-2401. [DOI: https://dx.doi.org/10.1089/104303400750038499] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11096443]
12. Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage Activation and Polarization. Front. Biosci. J. Virtual Libr.; 2008; 13, pp. 453-461. [DOI: https://dx.doi.org/10.2741/2692]
13. Ma, J.; Ramachandran, M.; Jin, C.; Quijano-Rubio, C.; Martikainen, M.; Yu, D.; Essand, M. Characterization of Virus-Mediated Immunogenic Cancer Cell Death and the Consequences for Oncolytic Virus-Based Immunotherapy of Cancer. Cell Death Dis.; 2020; 11, 48. [DOI: https://dx.doi.org/10.1038/s41419-020-2236-3]
14. Decraene, B.; Yang, Y.; De Smet, F.; Garg, A.D.; Agostinis, P.; De Vleeschouwer, S. Immunogenic Cell Death and Its Therapeutic or Prognostic Potential in High-Grade Glioma. Genes Immun.; 2022; pp. 1-11. [DOI: https://dx.doi.org/10.1038/s41435-021-00161-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35046546]
15. Rius-Rocabert, S.; García-Romero, N.; García, A.; Ayuso-Sacido, A.; Nistal-Villan, E. Oncolytic Virotherapy in Glioma Tumors. Int. J. Mol. Sci.; 2020; 21, 7604. [DOI: https://dx.doi.org/10.3390/ijms21207604] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33066689]
16. Nguyen, H.-M.; Saha, D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother.; 2021; 10, pp. 1-27. [DOI: https://dx.doi.org/10.2147/OV.S268426]
17. Parker, J.N.; Gillespie, G.Y.; Love, C.E.; Randall, S.; Whitley, R.J.; Markert, J.M. Engineered Herpes Simplex Virus Expressing IL-12 in the Treatment of Experimental Murine Brain Tumors. Proc. Natl. Acad. Sci. USA; 2000; 97, pp. 2208-2213. [DOI: https://dx.doi.org/10.1073/pnas.040557897]
18. Andreansky, S.; He, B.; van Cott, J.; McGhee, J.; Markert, J.M.; Gillespie, G.Y.; Roizman, B.; Whitley, R.J. Treatment of Intracranial Gliomas in Immunocompetent Mice Using Herpes Simplex Viruses That Express Murine Interleukins. Gene Ther.; 1998; 5, pp. 121-130. [DOI: https://dx.doi.org/10.1038/sj.gt.3300550]
19. Glorioso, J.C.; Cohen, J.B.; Goins, W.F.; Hall, B.; Jackson, J.W.; Kohanbash, G.; Amankulor, N.; Kaur, B.; Caligiuri, M.A.; Chiocca, E.A. et al. Oncolytic HSV Vectors and Anti-Tumor Immunity. Curr. Issues Mol. Biol.; 2021; 41, pp. 381-468. [DOI: https://dx.doi.org/10.21775/cimb.041.381]
20. Gromeier, M.; Lachmann, S.; Rosenfeld, M.R.; Gutin, P.H.; Wimmer, E. Intergeneric Poliovirus Recombinants for the Treatment of Malignant Glioma. Proc. Natl. Acad. Sci. USA; 2000; 97, pp. 6803-6808. [DOI: https://dx.doi.org/10.1073/pnas.97.12.6803]
21. Desjardins, A.; Gromeier, M.; Herndon, J.E.; Beaubier, N.; Bolognesi, D.P.; Friedman, A.H.; Friedman, H.S.; McSherry, F.; Muscat, A.M.; Nair, S. et al. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N. Engl. J. Med.; 2018; 379, pp. 150-161. [DOI: https://dx.doi.org/10.1056/NEJMoa1716435] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29943666]
22. Brown, M.C.; Holl, E.K.; Boczkowski, D.; Dobrikova, E.; Mosaheb, M.; Chandramohan, V.; Bigner, D.D.; Gromeier, M.; Nair, S.K. Cancer Immunotherapy with Recombinant Poliovirus Induces IFN-Dominant Activation of Dendritic Cells and Tumor Antigen-Specific CTLs. Sci. Transl. Med.; 2017; 9, eaan4220. [DOI: https://dx.doi.org/10.1126/scitranslmed.aan4220] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28931654]
23. Walton, R.W.; Brown, M.C.; Sacco, M.T.; Gromeier, M. Engineered Oncolytic Poliovirus PVSRIPO Subverts MDA5-Dependent Innate Immune Responses in Cancer Cells. J. Virol.; 2018; 92, e00879-18. [DOI: https://dx.doi.org/10.1128/JVI.00879-18] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29997212]
24. Liu, P.; Wang, Y.; Wang, Y.; Kong, Z.; Chen, W.; Li, J.; Chen, W.; Tong, Y.; Ma, W.; Wang, Y. Effects of Oncolytic Viruses and Viral Vectors on Immunity in Glioblastoma. Gene Ther.; 2020; pp. 1-12. [DOI: https://dx.doi.org/10.1038/s41434-020-00207-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33191399]
25. Ji, N.; Weng, D.; Liu, C.; Gu, Z.; Chen, S.; Guo, Y.; Fan, Z.; Wang, X.; Chen, J.; Zhao, Y. et al. Adenovirus-Mediated Delivery of Herpes Simplex Virus Thymidine Kinase Administration Improves Outcome of Recurrent High-Grade Glioma. Oncotarget; 2015; 7, pp. 4369-4378. [DOI: https://dx.doi.org/10.18632/oncotarget.6737] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26716896]
26. Varda-Bloom, N.; Shaish, A.; Gonen, A.; Levanon, K.; Greenbereger, S.; Ferber, S.; Levkovitz, H.; Castel, D.; Goldberg, I.; Afek, A. et al. Tissue-Specific Gene Therapy Directed to Tumor Angiogenesis. Gene Ther.; 2001; 8, pp. 819-827. [DOI: https://dx.doi.org/10.1038/sj.gt.3301472]
27. Brenner, A.J.; Peters, K.B.; Vredenburgh, J.; Bokstein, F.; Blumenthal, D.T.; Yust-Katz, S.; Peretz, I.; Oberman, B.; Freedman, L.S.; Ellingson, B.M. et al. Safety and Efficacy of VB-111, an Anticancer Gene Therapy, in Patients with Recurrent Glioblastoma: Results of a Phase I/II Study. Neuro-Oncology; 2020; 22, pp. 694-704. [DOI: https://dx.doi.org/10.1093/neuonc/noz231]
28. Lang, F.F.; Conrad, C.; Gomez-Manzano, C.; Yung, W.K.A.; Sawaya, R.; Weinberg, J.S.; Prabhu, S.S.; Rao, G.; Fuller, G.N.; Aldape, K.D. et al. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.; 2018; 36, pp. 1419-1427. [DOI: https://dx.doi.org/10.1200/JCO.2017.75.8219]
29. Denton, N.L.; Chen, C.-Y.; Scott, T.R.; Cripe, T.P. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?. Biomedicines; 2016; 4, 13. [DOI: https://dx.doi.org/10.3390/biomedicines4030013]
30. Razavi, S.-M.; Lee, K.E.; Jin, B.E.; Aujla, P.S.; Gholamin, S.; Li, G. Immune Evasion Strategies of Glioblastoma. Front. Surg.; 2016; 3, 11. [DOI: https://dx.doi.org/10.3389/fsurg.2016.00011]
31. Fulci, G.; Dmitrieva, N.; Gianni, D.; Fontana, E.J.; Pan, X.; Lu, Y.; Kaufman, C.S.; Kaur, B.; Lawler, S.E.; Lee, R.J. et al. Depletion of Peripheral Macrophages and Brain Microglia Increases Brain Tumor Titers of Oncolytic Viruses. Cancer Res.; 2007; 67, pp. 9398-9406. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-07-1063]
32. Buonfiglioli, A.; Hambardzumyan, D. Macrophages and Microglia: The Cerberus of Glioblastoma. Acta Neuropathol. Commun.; 2021; 9, 54. [DOI: https://dx.doi.org/10.1186/s40478-021-01156-z]
33. Kamińska, B.; Gabrusiewicz, K.; Sielska, M. Characteristics of Phenotype and Pro-Tumorigenic Roles of Glioma Infiltrating Microglia/Macrophages. J. Neurol. Neurophysiol.; 2011; s5, pp. 1-6. [DOI: https://dx.doi.org/10.4172/2155-9562.S5-001]
34. Wesolowska, A.; Kwiatkowska, A.; Slomnicki, L.; Dembinski, M.; Master, A.; Sliwa, M.; Franciszkiewicz, K.; Chouaib, S.; Kaminska, B. Microglia-Derived TGF-Beta as an Important Regulator of Glioblastoma Invasion--an Inhibition of TGF-Beta-Dependent Effects by ShRNA against Human TGF-Beta Type II Receptor. Oncogene; 2008; 27, pp. 918-930. [DOI: https://dx.doi.org/10.1038/sj.onc.1210683]
35. Roggendorf, W.; Strupp, S.; Paulus, W. Distribution and Characterization of Microglia/Macrophages in Human Brain Tumors. Acta Neuropathol.; 1996; 92, pp. 288-293. [DOI: https://dx.doi.org/10.1007/s004010050520]
36. Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol.; 2000; 164, pp. 6166-6173. [DOI: https://dx.doi.org/10.4049/jimmunol.164.12.6166] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10843666]
37. Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage Plasticity and Polarization in Tissue Repair and Remodelling. J. Pathol.; 2013; 229, pp. 176-185. [DOI: https://dx.doi.org/10.1002/path.4133] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23096265]
38. Choi, J.; Mai, N.; Jackson, C.; Belcaid, Z.; Lim, M. It Takes Two: Potential Therapies and Insights Involving Microglia and Macrophages in Glioblastoma. Neuroimmunol. Neuroinflamm.; 2018; 5, 42. [DOI: https://dx.doi.org/10.20517/2347-8659.2018.47]
39. Lawrence, T.; Natoli, G. Transcriptional Regulation of Macrophage Polarization: Enabling Diversity with Identity. Nat. Rev. Immunol.; 2011; 11, pp. 750-761. [DOI: https://dx.doi.org/10.1038/nri3088]
40. Rider, P.; Carmi, Y.; Guttman, O.; Braiman, A.; Cohen, I.; Voronov, E.; White, M.R.; Dinarello, C.A.; Apte, R.N. IL-1α and IL-1β Recruit Different Myeloid Cells and Promote Different Stages of Sterile Inflammation. J. Immunol. Baltim. Md 1950; 2011; 187, pp. 4835-4843. [DOI: https://dx.doi.org/10.4049/jimmunol.1102048]
41. Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The Role of Microglia and Macrophages in Glioma Maintenance and Progression. Nat. Neurosci.; 2016; 19, pp. 20-27. [DOI: https://dx.doi.org/10.1038/nn.4185] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26713745]
42. Cooper, M.A.; Fehniger, T.A.; Turner, S.C.; Chen, K.S.; Ghaheri, B.A.; Ghayur, T.; Carson, W.E.; Caligiuri, M.A. Human Natural Killer Cells: A Unique Innate Immunoregulatory Role for the CD56 (Bright) Subset. Blood; 2001; 97, pp. 3146-3151. [DOI: https://dx.doi.org/10.1182/blood.V97.10.3146] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11342442]
43. Wu, A.; Wei, J.; Kong, L.-Y.; Wang, Y.; Priebe, W.; Qiao, W.; Sawaya, R.; Heimberger, A.B. Glioma Cancer Stem Cells Induce Immunosuppressive Macrophages/Microglia. Neuro-Oncology; 2010; 12, pp. 1113-1125. [DOI: https://dx.doi.org/10.1093/neuonc/noq082]
44. Honda, K.; Taniguchi, T. IRFs: Master Regulators of Signalling by Toll-like Receptors and Cytosolic Pattern-Recognition Receptors. Nat. Rev. Immunol.; 2006; 6, pp. 644-658. [DOI: https://dx.doi.org/10.1038/nri1900] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16932750]
45. Kang, K.; Reilly, S.M.; Karabacak, V.; Gangl, M.R.; Fitzgerald, K.; Hatano, B.; Lee, C.-H. Adipocyte-Derived Th2 Cytokines and Myeloid PPARdelta Regulate Macrophage Polarization and Insulin Sensitivity. Cell Metab.; 2008; 7, pp. 485-495. [DOI: https://dx.doi.org/10.1016/j.cmet.2008.04.002]
46. Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Red Eagle, A.; Vats, D.; Morel, C.R.; Goforth, M.H.; Subramanian, V.; Mukundan, L.; Ferrante, A.W.; Chawla, A. Alternative M2 Activation of Kupffer Cells by PPARdelta Ameliorates Obesity-Induced Insulin Resistance. Cell Metab.; 2008; 7, pp. 496-507. [DOI: https://dx.doi.org/10.1016/j.cmet.2008.04.003]
47. Marigo, I.; Dolcetti, L.; Serafini, P.; Zanovello, P.; Bronte, V. Tumor-Induced Tolerance and Immune Suppression by Myeloid Derived Suppressor Cells. Immunol. Rev.; 2008; 222, pp. 162-179. [DOI: https://dx.doi.org/10.1111/j.1600-065X.2008.00602.x]
48. Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T. et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity; 2014; 41, pp. 14-20. [DOI: https://dx.doi.org/10.1016/j.immuni.2014.06.008]
49. Negishi, H.; Ohba, Y.; Yanai, H.; Takaoka, A.; Honma, K.; Yui, K.; Matsuyama, T.; Taniguchi, T.; Honda, K. Negative Regulation of Toll-like-Receptor Signaling by IRF-4. Proc. Natl. Acad. Sci. USA; 2005; 102, pp. 15989-15994. [DOI: https://dx.doi.org/10.1073/pnas.0508327102]
50. Takaoka, A.; Yanai, H.; Kondo, S.; Duncan, G.; Negishi, H.; Mizutani, T.; Kano, S.-I.; Honda, K.; Ohba, Y.; Mak, T.W. et al. Integral Role of IRF-5 in the Gene Induction Programme Activated by Toll-like Receptors. Nature; 2005; 434, pp. 243-249. [DOI: https://dx.doi.org/10.1038/nature03308]
51. Li, W.; Graeber, M.B. The Molecular Profile of Microglia under the Influence of Glioma. Neuro-Oncol.; 2012; 14, pp. 958-978. [DOI: https://dx.doi.org/10.1093/neuonc/nos116]
52. Charles, N.A.; Holland, E.C.; Gilbertson, R.; Glass, R.; Kettenmann, H. The Brain Tumor Microenvironment. Glia; 2011; 59, pp. 1169-1180. [DOI: https://dx.doi.org/10.1002/glia.21136]
53. Brault, M.S.; Kurt, R.A. Impact of Tumor-Derived CCL2 on Macrophage Effector Function. J. Biomed. Biotechnol.; 2005; 2005, pp. 37-43. [DOI: https://dx.doi.org/10.1155/JBB.2005.37] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15689637]
54. Conti, I.; Rollins, B.J. CCL2 (Monocyte Chemoattractant Protein-1) and Cancer. Semin. Cancer Biol.; 2004; 14, pp. 149-154. [DOI: https://dx.doi.org/10.1016/j.semcancer.2003.10.009]
55. Lamagna, C.; Aurrand-Lions, M.; Imhof, B.A. Dual Role of Macrophages in Tumor Growth and Angiogenesis. J. Leukoc. Biol.; 2006; 80, pp. 705-713. [DOI: https://dx.doi.org/10.1189/jlb.1105656]
56. Pixley, F.J.; Stanley, E.R. CSF-1 Regulation of the Wandering Macrophage: Complexity in Action. Trends Cell Biol.; 2004; 14, pp. 628-638. [DOI: https://dx.doi.org/10.1016/j.tcb.2004.09.016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15519852]
57. Lin, E.Y.; Nguyen, A.V.; Russell, R.G.; Pollard, J.W. Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy. J. Exp. Med.; 2001; 193, pp. 727-740. [DOI: https://dx.doi.org/10.1084/jem.193.6.727]
58. Pollard, J.W. Tumour-Educated Macrophages Promote Tumour Progression and Metastasis. Nat. Rev. Cancer; 2004; 4, pp. 71-78. [DOI: https://dx.doi.org/10.1038/nrc1256]
59. Wei, J.; Gabrusiewicz, K.; Heimberger, A. The Controversial Role of Microglia in Malignant Gliomas. Clin. Dev. Immunol.; 2013; 2013, 285246. [DOI: https://dx.doi.org/10.1155/2013/285246] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23983766]
60. D’Andrea, A.; Aste-Amezaga, M.; Valiante, N.M.; Ma, X.; Kubin, M.; Trinchieri, G. Interleukin 10 (IL-10) Inhibits Human Lymphocyte Interferon Gamma-Production by Suppressing Natural Killer Cell Stimulatory Factor/IL-12 Synthesis in Accessory Cells. J. Exp. Med.; 1993; 178, pp. 1041-1048. [DOI: https://dx.doi.org/10.1084/jem.178.3.1041] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8102388]
61. Biswas, S.K.; Mantovani, A. Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nat. Immunol.; 2010; 11, pp. 889-896. [DOI: https://dx.doi.org/10.1038/ni.1937]
62. Nduom, E.K.; Weller, M.; Heimberger, A.B. Immunosuppressive Mechanisms in Glioblastoma. Neuro-Oncol.; 2015; 17, (Suppl. 7), pp. vii9-vii14. [DOI: https://dx.doi.org/10.1093/neuonc/nov151] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26516226]
63. Bolyard, C.; Meisen, W.H.; Banasavadi-Siddegowda, Y.; Hardcastle, J.; Yoo, J.Y.; Wohleb, E.S.; Wojton, J.; Yu, J.-G.; Dubin, S.; Khosla, M. et al. BAI1 Orchestrates Macrophage Inflammatory Response to HSV Infection—Implications for Oncolytic Viral Therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.; 2017; 23, pp. 1809-1819. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-16-1818] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27852701]
64. Delwar, Z.M.; Kuo, Y.; Wen, Y.H.; Rennie, P.S.; Jia, W. Oncolytic Virotherapy Blockade by Microglia and Macrophages Requires STAT1/3. Cancer Res.; 2018; 78, pp. 718-730. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-17-0599]
65. Saha, D.; Martuza, R.L.; Rabkin, S.D. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell; 2017; 32, pp. 253-267.e5. [DOI: https://dx.doi.org/10.1016/j.ccell.2017.07.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28810147]
66. Wakimoto, H.; Johnson, P.R.; Knipe, D.M.; Chiocca, E.A. Effects of Innate Immunity on Herpes Simplex Virus and Its Ability to Kill Tumor Cells. Gene Ther.; 2003; 10, pp. 983-990. [DOI: https://dx.doi.org/10.1038/sj.gt.3302038] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12756419]
67. van den Bossche, W.B.L.; Kleijn, A.; Teunissen, C.E.; Voerman, J.S.A.; Teodosio, C.; Noske, D.P.; van Dongen, J.J.M.; Dirven, C.M.F.; Lamfers, M.L.M. Oncolytic Virotherapy in Glioblastoma Patients Induces a Tumor Macrophage Phenotypic Shift Leading to an Altered Glioblastoma Microenvironment. Neuro-Oncology; 2018; 20, pp. 1494-1504. [DOI: https://dx.doi.org/10.1093/neuonc/noy082]
68. Kleijn, A.; Kloezeman, J.; Treffers-Westerlaken, E.; Fulci, G.; Leenstra, S.; Dirven, C.; Debets, R.; Lamfers, M. The in Vivo Therapeutic Efficacy of the Oncolytic Adenovirus Delta24-RGD Is Mediated by Tumor-Specific Immunity. PLoS ONE; 2014; 9, e97495. [DOI: https://dx.doi.org/10.1371/journal.pone.0097495]
69. Kiyokawa, J.; Kawamura, Y.; Ghouse, S.M.; Acar, S.; Barçın, E.; Martínez-Quintanilla, J.; Martuza, R.L.; Alemany, R.; Rabkin, S.D.; Shah, K. et al. Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.; 2021; 27, pp. 889-902. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-20-2400] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33257429]
70. Angelova, A.L.; Barf, M.; Geletneky, K.; Unterberg, A.; Rommelaere, J. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity. Viruses; 2017; 9, 382. [DOI: https://dx.doi.org/10.3390/v9120382]
71. Grekova, S.P.; Raykov, Z.; Zawatzky, R.; Rommelaere, J.; Koch, U. Activation of a Glioma-Specific Immune Response by Oncolytic Parvovirus Minute Virus of Mice Infection. Cancer Gene Ther.; 2012; 19, pp. 468-475. [DOI: https://dx.doi.org/10.1038/cgt.2012.20] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22539062]
72. Geletneky, K.; Hajda, J.; Angelova, A.L.; Leuchs, B.; Capper, D.; Bartsch, A.J.; Neumann, J.-O.; Schöning, T.; Hüsing, J.; Beelte, B. et al. Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial. Mol. Ther. J. Am. Soc. Gene Ther.; 2017; 25, pp. 2620-2634. [DOI: https://dx.doi.org/10.1016/j.ymthe.2017.08.016]
73. Kober, C.; Rohn, S.; Weibel, S.; Geissinger, U.; Chen, N.G.; Szalay, A.A. Microglia and Astrocytes Attenuate the Replication of the Oncolytic Vaccinia Virus LIVP 1.1.1 in Murine GL261 Gliomas by Acting as Vaccinia Virus Traps. J. Transl. Med.; 2015; 13, 216. [DOI: https://dx.doi.org/10.1186/s12967-015-0586-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26149494]
74. Nguyen, H.-M.; Guz-Montgomery, K.; Saha, D. Oncolytic Virus Encoding a Master Pro-Inflammatory Cytokine Interleukin 12 in Cancer Immunotherapy. Cells; 2020; 9, 400. [DOI: https://dx.doi.org/10.3390/cells9020400] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32050597]
75. Nguyen, K.G.; Vrabel, M.R.; Mantooth, S.M.; Hopkins, J.J.; Wagner, E.S.; Gabaldon, T.A.; Zaharoff, D.A. Localized Interleukin-12 for Cancer Immunotherapy. Front. Immunol.; 2020; 11, 575597. [DOI: https://dx.doi.org/10.3389/fimmu.2020.575597]
76. Cheema, T.A.; Wakimoto, H.; Fecci, P.E.; Ning, J.; Kuroda, T.; Jeyaretna, D.S.; Martuza, R.L.; Rabkin, S.D. Multifaceted Oncolytic Virus Therapy for Glioblastoma in an Immunocompetent Cancer Stem Cell Model. Proc. Natl. Acad. Sci. USA; 2013; 110, pp. 12006-12011. [DOI: https://dx.doi.org/10.1073/pnas.1307935110]
77. Hellums, E.K.; Markert, J.M.; Parker, J.N.; He, B.; Perbal, B.; Roizman, B.; Whitley, R.J.; Langford, C.P.; Bharara, S.; Gillespie, G.Y. Increased Efficacy of an Interleukin-12-Secreting Herpes Simplex Virus in a Syngeneic Intracranial Murine Glioma Model. Neuro-Oncol.; 2005; 7, pp. 213-224. [DOI: https://dx.doi.org/10.1215/S1152851705000074]
78. Ino, Y.; Saeki, Y.; Fukuhara, H.; Todo, T. Triple Combination of Oncolytic Herpes Simplex Virus-1 Vectors Armed with Interleukin-12, Interleukin-18, or Soluble B7-1 Results in Enhanced Antitumor Efficacy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.; 2006; 12, pp. 643-652. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-05-1494]
79. Markert, J.M.; Cody, J.J.; Parker, J.N.; Coleman, J.M.; Price, K.H.; Kern, E.R.; Quenelle, D.C.; Lakeman, A.D.; Schoeb, T.R.; Palmer, C.A. et al. Preclinical Evaluation of a Genetically Engineered Herpes Simplex Virus Expressing Interleukin-12. J. Virol.; 2012; 86, pp. 5304-5313. [DOI: https://dx.doi.org/10.1128/JVI.06998-11]
80. Lynch, D.H.; Andreasen, A.; Maraskovsky, E.; Whitmore, J.; Miller, R.E.; Schuh, J.C. Flt3 Ligand Induces Tumor Regression and Antitumor Immune Responses in Vivo. Nat. Med.; 1997; 3, pp. 625-631. [DOI: https://dx.doi.org/10.1038/nm0697-625]
81. Chakravarty, P.K.; Alfieri, A.; Thomas, E.K.; Beri, V.; Tanaka, K.E.; Vikram, B.; Guha, C. Flt3-Ligand Administration after Radiation Therapy Prolongs Survival in a Murine Model of Metastatic Lung Cancer. Cancer Res.; 1999; 59, pp. 6028-6032. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10626784]
82. Barnard, Z.; Wakimoto, H.; Zaupa, C.; Jeyeretna, D.S.; Patel, A.P.; Kle, J.; Martuza, R.L.; Rabkin, S.D.; Curry, W.T. Expression of FMS-like Tyrosine Kinase 3 Ligand by Oncolytic Herpes Simplex Virus Type I Prolongs Survival in Mice Bearing Established Syngeneic Intracranial Malignant Glioma. Neurosurgery; 2012; 71, pp. 741-748. [DOI: https://dx.doi.org/10.1227/NEU.0b013e318260fd73] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22653387]
83. Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-Driven Biomarkers to Guide Immune Checkpoint Blockade in Cancer Therapy. Nat. Rev. Cancer; 2016; 16, pp. 275-287. [DOI: https://dx.doi.org/10.1038/nrc.2016.36]
84. Filley, A.C.; Henriquez, M.; Dey, M. Recurrent Glioma Clinical Trial, CheckMate-143: The Game Is Not over Yet. Oncotarget; 2017; 8, pp. 91779-91794. [DOI: https://dx.doi.org/10.18632/oncotarget.21586]
85. Reardon, D.A.; Freeman, G.; Wu, C.; Chiocca, E.A.; Wucherpfennig, K.W.; Wen, P.Y.; Fritsch, E.F.; Curry, W.T.; Sampson, J.H.; Dranoff, G. Immunotherapy Advances for Glioblastoma. Neuro Oncol.; 2014; 16, pp. 1441-1458. [DOI: https://dx.doi.org/10.1093/neuonc/nou212]
86. Khasraw, M.; Reardon, D.A.; Weller, M.; Sampson, J.H. PD-1 Inhibitors: Do They Have a Future in the Treatment of Glioblastoma?. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.; 2020; 26, pp. 5287-5296. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-20-1135]
87. Oh, T.; Fakurnejad, S.; Sayegh, E.T.; Clark, A.J.; Ivan, M.E.; Sun, M.Z.; Safaee, M.; Bloch, O.; James, C.D.; Parsa, A.T. Immunocompetent Murine Models for the Study of Glioblastoma Immunotherapy. J. Transl. Med.; 2014; 12, 107. [DOI: https://dx.doi.org/10.1186/1479-5876-12-107]
88. Jiang, H.; Rivera-Molina, Y.; Gomez-Manzano, C.; Clise-Dwyer, K.; Bover, L.; Vence, L.M.; Yuan, Y.; Lang, F.F.; Toniatti, C.; Hossain, M.B. et al. Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer Res.; 2017; 77, pp. 3894-3907. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-17-0468] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28566332]
89. Rivera-Molina, Y.; Jiang, H.; Fueyo, J.; Nguyen, T.; Shin, D.H.; Youssef, G.; Fan, X.; Gumin, J.; Alonso, M.M.; Phadnis, S. et al. GITRL-Armed Delta-24-RGD Oncolytic Adenovirus Prolongs Survival and Induces Anti-Glioma Immune Memory. Neuro-Oncol. Adv.; 2019; 1, vdz009. [DOI: https://dx.doi.org/10.1093/noajnl/vdz009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31608328]
90. Lamfers, M.L.M.; Fulci, G.; Gianni, D.; Tang, Y.; Kurozumi, K.; Kaur, B.; Moeniralm, S.; Saeki, Y.; Carette, J.E.; Weissleder, R. et al. Cyclophosphamide Increases Transgene Expression Mediated by an Oncolytic Adenovirus in Glioma-Bearing Mice Monitored by Bioluminescence Imaging. Mol. Ther. J. Am. Soc. Gene Ther.; 2006; 14, pp. 779-788. [DOI: https://dx.doi.org/10.1016/j.ymthe.2006.08.008]
91. Fulci, G.; Breymann, L.; Gianni, D.; Kurozomi, K.; Rhee, S.S.; Yu, J.; Kaur, B.; Louis, D.N.; Weissleder, R.; Caligiuri, M.A. et al. Cyclophosphamide Enhances Glioma Virotherapy by Inhibiting Innate Immune Responses. Proc. Natl. Acad. Sci.; 2006; 103, pp. 12873-12878. [DOI: https://dx.doi.org/10.1073/pnas.0605496103]
92. Meisen, W.H.; Wohleb, E.S.; Jaime-Ramirez, A.C.; Bolyard, C.; Yoo, J.Y.; Russell, L.; Hardcastle, J.; Dubin, S.; Muili, K.; Yu, J. et al. The Impact of Macrophage- and Microglia-Secreted TNFα on Oncolytic HSV-1 Therapy in the Glioblastoma Tumor Microenvironment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.; 2015; 21, pp. 3274-3285. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-14-3118] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25829396]
93. Ikeda, K.; Ichikawa, T.; Wakimoto, H.; Silver, J.S.; Deisboeck, T.S.; Finkelstein, D.; Harsh, G.R.; Louis, D.N.; Bartus, R.T.; Hochberg, F.H. et al. Oncolytic Virus Therapy of Multiple Tumors in the Brain Requires Suppression of Innate and Elicited Antiviral Responses. Nat. Med.; 1999; 5, pp. 881-887. [DOI: https://dx.doi.org/10.1038/11320]
94. Kurozumi, K.; Hardcastle, J.; Thakur, R.; Yang, M.; Christoforidis, G.; Fulci, G.; Hochberg, F.H.; Weissleder, R.; Carson, W.; Chiocca, E.A. et al. Effect of Tumor Microenvironment Modulation on the Efficacy of Oncolytic Virus Therapy. J. Natl. Cancer Inst.; 2007; 99, pp. 1768-1781. [DOI: https://dx.doi.org/10.1093/jnci/djm229] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18042934]
95. Wakimoto, H.; Fulci, G.; Tyminski, E.; Chiocca, E.A. Altered Expression of Antiviral Cytokine MRNAs Associated with Cyclophosphamide’s Enhancement of Viral Oncolysis. Gene Ther.; 2004; 11, pp. 214-223. [DOI: https://dx.doi.org/10.1038/sj.gt.3302143]
96. Zemp, F.J.; McKenzie, B.A.; Lun, X.; Reilly, K.M.; McFadden, G.; Yong, V.W.; Forsyth, P.A. Cellular Factors Promoting Resistance to Effective Treatment of Glioma with Oncolytic Myxoma Virus. Cancer Res.; 2014; 74, pp. 7260-7273. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-14-0876]
97. Kambara, H.; Saeki, Y.; Chiocca, E.A. Cyclophosphamide Allows for In Vivo Dose Reduction of a Potent Oncolytic Virus. Cancer Res.; 2005; 65, pp. 11255-11258. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-05-2278] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16357128]
98. Lun, X.; Alain, T.; Zemp, F.J.; Zhou, H.; Rahman, M.M.; Hamilton, M.G.; McFadden, G.; Bell, J.; Senger, D.L.; Forsyth, P.A. Myxoma Virus Virotherapy for Glioma in Immunocompetent Animal Models: Optimizing Administration Routes and Synergy with Rapamycin. Cancer Res.; 2010; 70, pp. 598-608. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-09-1510]
99. Lee, T.J.; Nair, M.; Banasavadi-Siddegowda, Y.; Liu, J.; Nallanagulagari, T.; Jaime-Ramirez, A.C.; Guo, J.Y.; Quadri, H.; Zhang, J.; Bockhorst, K.H. et al. Enhancing Therapeutic Efficacy of Oncolytic Herpes Simplex Virus-1 with Integrin Β1 Blocking Antibody OS2966. Mol. Cancer Ther.; 2019; 18, pp. 1127-1136. [DOI: https://dx.doi.org/10.1158/1535-7163.MCT-18-0953] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30926634]
100. Alvarez-Breckenridge, C.A.; Yu, J.; Price, R.; Wei, M.; Wang, Y.; Nowicki, M.O.; Ha, Y.P.; Bergin, S.; Hwang, C.; Fernandez, S.A. et al. The Histone Deacetylase Inhibitor Valproic Acid Lessens NK Cell Action against Oncolytic Virus-Infected Glioblastoma Cells by Inhibition of STAT5/T-BET Signaling and Generation of Gamma Interferon. J. Virol.; 2012; 86, pp. 4566-4577. [DOI: https://dx.doi.org/10.1128/JVI.05545-11] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22318143]
101. Thorne, A.H.; Meisen, W.H.; Russell, L.; Yoo, J.Y.; Bolyard, C.M.; Lathia, J.D.; Rich, J.; Puduvalli, V.K.; Mao, H.; Yu, J. et al. Role of Cysteine-Rich 61 Protein (CCN1) in Macrophage-Mediated Oncolytic Herpes Simplex Virus Clearance. Mol. Ther.; 2014; 22, pp. 1678-1687. [DOI: https://dx.doi.org/10.1038/mt.2014.101] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24895995]
102. Haseley, A.; Boone, S.; Wojton, J.; Yu, L.; Yoo, J.Y.; Yu, J.; Kurozumi, K.; Glorioso, J.C.; Caligiuri, M.A.; Kaur, B. Extracellular Matrix Protein CCN1 Limits Oncolytic Efficacy in Glioma. Cancer Res.; 2012; 72, pp. 1353-1362. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-11-2526]
103. Jacobsen, K.; Russell, L.; Kaur, B.; Friedman, A. Effects of CCN1 and Macrophage Content on Glioma Virotherapy: A Mathematical Model. Bull. Math. Biol.; 2015; 77, pp. 984-1012. [DOI: https://dx.doi.org/10.1007/s11538-015-0074-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25758754]
104. Robson, C.N.; Gnanapragasam, V.; Byrne, R.L.; Collins, A.T.; Neal, D.E. Transforming Growth Factor-Beta1 up-Regulates P15, P21 and P27 and Blocks Cell Cycling in G1 in Human Prostate Epithelium. J. Endocrinol.; 1999; 160, pp. 257-266. [DOI: https://dx.doi.org/10.1677/joe.0.1600257] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9924195]
105. Han, J.; Chen, X.; Chu, J.; Xu, B.; Meisen, W.H.; Chen, L.; Zhang, L.; Zhang, J.; He, X.; Wang, Q.-E. et al. TGFβ Treatment Enhances Glioblastoma Virotherapy by Inhibiting the Innate Immune Response. Cancer Res.; 2015; 75, pp. 5273-5282. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-15-0894] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26631269]
106. Buiting, A.M.; Zhou, F.; Bakker, J.A.; van Rooijen, N.; Huang, L. Biodistribution of Clodronate and Liposomes Used in the Liposome Mediated Macrophage “suicide” Approach. J. Immunol. Methods; 1996; 192, pp. 55-62. [DOI: https://dx.doi.org/10.1016/0022-1759(96)00034-8]
107. Wang, J.; Shen, F.; Yao, Y.; Wang, L.-L.; Zhu, Y.; Hu, J. Adoptive Cell Therapy: A Novel and Potential Immunotherapy for Glioblastoma. Front. Oncol.; 2020; 10, 59. [DOI: https://dx.doi.org/10.3389/fonc.2020.00059] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32083009]
108. Dogrammatzis, C.; Waisner, H.; Kalamvoki, M. Cloaked Viruses and Viral Factors in Cutting Edge Exosome-Based Therapies. Front. Cell Dev. Biol.; 2020; 8, 376. [DOI: https://dx.doi.org/10.3389/fcell.2020.00376]
109. Park, D.; Tosello-Trampont, A.-C.; Elliott, M.R.; Lu, M.; Haney, L.B.; Ma, Z.; Klibanov, A.L.; Mandell, J.W.; Ravichandran, K.S. BAI1 Is an Engulfment Receptor for Apoptotic Cells Upstream of the ELMO/Dock180/Rac Module. Nature; 2007; 450, pp. 430-434. [DOI: https://dx.doi.org/10.1038/nature06329]
110. Zhang, L.; Alizadeh, D.; Van Handel, M.; Kortylewski, M.; Yu, H.; Badie, B. Stat3 Inhibition Activates Tumor Macrophages and Abrogates Glioma Growth in Mice. Glia; 2009; 57, pp. 1458-1467. [DOI: https://dx.doi.org/10.1002/glia.20863]
111. Alvarez-Breckenridge, C.A.; Yu, J.; Price, R.; Wojton, J.; Pradarelli, J.; Mao, H.; Wei, M.; Wang, Y.; He, S.; Hardcastle, J. et al. NK Cells Impede Glioblastoma Virotherapy through NKp30 and NKp46 Natural Cytotoxicity Receptors. Nat. Med.; 2012; 18, pp. 1827-1834. [DOI: https://dx.doi.org/10.1038/nm.3013] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23178246]
112. Lamfers, M.; Idema, S.; van Milligen, F.; Schouten, T.; van der Valk, P.; Vandertop, P.; Dirven, C.; Noske, D. Homing Properties of Adipose-Derived Stem Cells to Intracerebral Glioma and the Effects of Adenovirus Infection. Cancer Lett.; 2009; 274, pp. 78-87. [DOI: https://dx.doi.org/10.1016/j.canlet.2008.08.035]
113. Herrlinger, U.; Woiciechowski, C.; Sena-Esteves, M.; Aboody, K.S.; Jacobs, A.H.; Rainov, N.G.; Snyder, E.Y.; Breakefield, X.O. Neural Precursor Cells for Delivery of Replication-Conditional HSV-1 Vectors to Intracerebral Gliomas. Mol. Ther. J. Am. Soc. Gene Ther.; 2000; 1, pp. 347-357. [DOI: https://dx.doi.org/10.1006/mthe.2000.0046]
114. Dey, M.; Yu, D.; Kanojia, D.; Li, G.; Sukhanova, M.; Spencer, D.A.; Pituch, K.C.; Zhang, L.; Han, Y.; Ahmed, A.U. et al. Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma. Stem Cell Rep.; 2016; 7, pp. 471-482. [DOI: https://dx.doi.org/10.1016/j.stemcr.2016.07.024] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27594591]
115. Morshed, R.A.; Gutova, M.; Juliano, J.; Barish, M.E.; Hawkins-Daarud, A.; Oganesyan, D.; Vazgen, K.; Yang, T.; Annala, A.; Ahmed, A.U. et al. Analysis of Glioblastoma Tumor Coverage by Oncolytic Virus-Loaded Neural Stem Cells Using MRI-Based Tracking and Histological Reconstruction. Cancer Gene Ther.; 2015; 22, pp. 55-61. [DOI: https://dx.doi.org/10.1038/cgt.2014.72]
116. Yong, R.L.; Shinojima, N.; Fueyo, J.; Gumin, J.; Vecil, G.G.; Marini, F.C.; Bogler, O.; Andreeff, M.; Lang, F.F. Human Bone Marrow-Derived Mesenchymal Stem Cells for Intravascular Delivery of Oncolytic Adenovirus Delta24-RGD to Human Gliomas. Cancer Res.; 2009; 69, pp. 8932-8940. [DOI: https://dx.doi.org/10.1158/0008-5472.CAN-08-3873] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19920199]
117. Iannacone, M.; Moseman, E.A.; Tonti, E.; Bosurgi, L.; Junt, T.; Henrickson, S.E.; Whelan, S.P.; Guidotti, L.G.; von Andrian, U.H. Subcapsular Sinus Macrophages Prevent CNS Invasion on Peripheral Infection with a Neurotropic Virus. Nature; 2010; 465, pp. 1079-1083. [DOI: https://dx.doi.org/10.1038/nature09118]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Oncolytic virotherapy is a rapidly progressing field that uses oncolytic viruses (OVs) to selectively infect malignant cells and cause an antitumor response through direct oncolysis and stimulation of the immune system. Despite demonstrated pre-clinical efficacy of OVs in many cancer types and some favorable clinical results in glioblastoma (GBM) trials, durable increases in overall survival have remained elusive. Recent evidence has emerged that tumor-associated macrophage/microglia (TAM) involvement is likely an important factor contributing to OV treatment failure. It is prudent to note that the relationship between TAMs and OV therapy failures is complex. Canonically activated TAMs (i.e., M1) drive an antitumor response while also inhibiting OV replication and spread. Meanwhile, M2 activated TAMs facilitate an immunosuppressive microenvironment thereby indirectly promoting tumor growth. In this focused review, we discuss the complicated interplay between TAMs and OV therapies in GBM. We review past studies that aimed to maximize effectiveness through immune system modulation—both immunostimulatory and immunosuppressant—and suggest future directions to maximize OV efficacy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Harvard Medical School, Boston, MA 02115, USA;
2 Harvard Medical School, Boston, MA 02115, USA;
3 Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany;
4 Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;