Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wildfires are complex natural events that cause significant environmental and property damage, as well as human losses, every year throughout the world. In order to aid in their management and mitigate their impact, efforts have been directed towards developing decision support systems that can predict wildfire propagation. Most of the available tools for wildfire spread prediction are based on the Rothermel model that, apart from being relatively complex and computing demanding, depends on several input parameters concerning the local fuels, wind or topography, which are difficult to obtain with a minimum resolution and degree of accuracy. These factors are leading causes for the deviations between the predicted fire propagation and the real fire propagation. In this sense, this paper conducts a literature review on optimization methodologies for wildfire spread prediction based on the use of evolutionary algorithms for input parameter set calibration. In the present literature review, it was observed that the current literature on wildfire spread prediction calibration is mostly focused on methodologies based on genetic algorithms (GAs). Inline with this trend, this paper presents an application of genetic algorithms for the calibration of a set of the Rothermel model’s input parameters, namely: surface-area-to-volume ratio, fuel bed depth, fuel moisture, and midflame wind speed. The GA was validated on 37 real datasets obtained through experimental prescribed fires in controlled conditions.

Details

Title
A Review of Genetic Algorithm Approaches for Wildfire Spread Prediction Calibration
Author
Pereira, Jorge 1 ; Mendes, Jérôme 1   VIAFID ORCID Logo  ; Júnior, Jorge S S 1 ; Viegas, Carlos 2 ; Paulo, João Ruivo 1   VIAFID ORCID Logo 

 Department of Electrical and Computer Engineering, Institute of Systems and Robotics, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal; [email protected] (J.P.); [email protected] (J.S.S.J.); [email protected] (J.R.P.) 
 Association for the Development of Industrial Aerodynamics, University of Coimbra, 3030-289 Coimbra, Portugal; [email protected] 
First page
300
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627707536
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.