Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Agile global software engineering challenges architectural knowledge (AK) management since face-to-face interactions are preferred over comprehensive documentation, which causes AK loss over time. The AK condensation concept was proposed to reduce AK losing, using the AK shared through unstructured electronic media. A crucial part of this concept is a classification mechanism to ease AK recovery in the future. We developed a Slack complement as a classification mechanism based on social tagging, which recommends tags according to a chat/message topic, using natural language processing (NLP) techniques. We evaluated two tagging modes: NLP-assisted versus alphabetical auto-completion, in terms of correctness and time to select a tag. Fifty-two participants used the complement emulating an agile and global scenario and gave us their complement’s perceptions about usefulness, ease of use, and work integration. Messages tagged through NLP recommendations showed fewer semantic errors, and participants spent less time selecting a tag. They perceived the component as very usable, useful, and easy to be integrated into the daily work. These results indicated that a tag recommendation system is necessary to classify the shared AK accurately and quickly. We will improve the NLP techniques to evaluate AK condensation in a long-term test as future work.

Details

Title
Tags’ Recommender to Classify Architectural Knowledge Applying Language Models
Author
Borrego, Gilberto 1   VIAFID ORCID Logo  ; González-López, Samuel 2   VIAFID ORCID Logo  ; Palacio, Ramón R 3   VIAFID ORCID Logo 

 Departamento de Computación y Diseño, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico; [email protected] 
 Department of Information Technologies, Universidad Tecnológica de Nogales, Nogales 84097, Mexico; [email protected] 
 Unidad Navojoa, Instituto Tecnológico de Sonora, Navojoa 85860, Mexico 
First page
446
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627740500
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.