Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the welding thermal cycle process of deep-sea pipeline steel was investigated by welding thermal simulation. The microstructure evolution, crystallology and second-phase precipitation behavior of the soft zone of the heat-affected zone (HAZ) were characterized and analyzed by combining scanning electron microscopy, electron back-scattered diffraction, transmission electron microscopy and hardness testing. The results show that HAZ softening appeared in the fine-grained zone with a peak temperature of 900–1000 °C for deep-sea pipeline steel, the base metal microstructure of which was the polygonal ferrite and acicular ferrite. Using V microalloying and low welding heat input could effectively decrease the softening of the HAZ fine-grained region, which was achieved by reducing the effective grain size, increasing the proportion of the dislocation substructures, and precipitating the nanoscale second-phase particles.

Details

Title
Effect of V Content and Heat Input on HAZ Softening of Deep-Sea Pipeline Steel
Author
Li, Ba 1 ; Liu, Qingyou 1 ; Jia, Shujun 1 ; Ren, Yi 2 ; Yang, Ping 1 

 Engineering Steel Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China; [email protected] (Q.L.); [email protected] (S.J.); [email protected] (P.Y.) 
 State Key Laboratory of Metal Material for Marine Equipment and Application, Iron & Steel Research Institutes of Ansteel Group Corporation, Anshan 114009, China; [email protected] 
First page
794
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627767782
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.